Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tính chất như sau: \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)
Vậy \(\left|x-2\right|+\left|x-4\right|=\left|x-2\right|+\left|4-x\right|\ge\left|x-2+4-x\right|=2\)
=> \(\left|x-2\right|+\left|x-4\right|\) đạt giá trị nhỏ nhất khi bằng 2
Nếu \(x\ge4\) (1) thì |x-2| + |x-4| = x-2 + x-4 =2x - 6 =2
=> 2x = 8 => x=4 (thõa mãn (1) )
Nếu \(2\le x
\(\left|x-4\right|+\left|x-5\right|+\left|x-6\right|\)
\(=\left|x-4\right|+\left|6-x\right|+\left|x-5\right|\)
\(\ge\left|x-4+6-x\right|+\left|x-5\right|=2+\left|x-5\right|\ge2\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(x-4\right)\left(6-x\right)\ge0\\x-5=0\end{matrix}\right.\)
\(\Rightarrow x=5\)
a) có nghĩa khi \(x-1\ne0\Rightarrow x\ne1\)
b)\(f\left(7\right)=\frac{7+2}{7-1}=\frac{9}{6}\)
c)\(f\left(x\right)=\frac{x+2}{x-1}=\frac{1}{4}\Leftrightarrow x+2=4x-4\)
\(\Leftrightarrow-3x=-6\Leftrightarrow x=2\)
e)\(f\left(x\right)>1\Rightarrow\frac{x+2}{x-1}-1>0\)
\(\Rightarrow\frac{3}{x-1}>0\) thấy 3>0 nên x-1>0 =>x>1
Bài 2:
a)\(P=9-2\left|x-3\right|\)
Thấy: \(\left|x-3\right|\ge0\)\(\Rightarrow2\left|x-3\right|\ge0\)
\(\Rightarrow-2\left|x-3\right|\le0\)
\(\Rightarrow9-2\left|x-3\right|\le9\)
Khi x=3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(Q=\left|x-2\right|+\left|x-8\right|\)
\(=\left|x-2\right|+\left|8-x\right|\)
\(\ge\left|x-2+8-x\right|=6\)
Khi \(2\le x\le8\)
x_<2--> x+1/2_<5/2 mà -|x-2/3|_<0 nên Max N = 5/2 khi và chỉ khi x=2
\(-\left|x-\frac{2}{3}\right|\le0\Rightarrow\frac{1}{2}-\left|x-\frac{2}{3}\right|\le\frac{1}{2}\)
\(\Rightarrow x+\frac{1}{2}-\left|x-\frac{2}{3}\right|\le\frac{1}{2}+x\le\frac{1}{2}+2=\frac{5}{2}\)
Dấu "=" xảy ra <=> x=2/3
Vậy MaxN=5/2 <=>x=2/3
Đây
ta có: \(B=\frac{1}{x-3}\)
Để B đạt GTLN thì \(\frac{1}{x-3}>0\) thì \(x-3\)phải đạt GTNN và \(x-3>0\)
Suy ra \(x-3=1\)\(\Rightarrow x=4\)
Vậy B đạt GTLN là 1 tại x= 4
bằng 2 chắc chắn