Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\frac{41}{10}}{\frac{9}{4}}=\frac{41}{10}\div\frac{9}{4}=\frac{41}{10}\times\frac{4}{9}=\frac{82}{45}\Rightarrow\frac{82}{45}=\frac{x}{7,3}\)
Đến đấy thôi
a ) Ta có : \(\frac{x+11}{10}+\frac{x+21}{20}+\frac{x+31}{30}=\frac{x+41}{40}+\frac{x+101}{5}\)
\(\Leftrightarrow\left(\frac{x+11}{10}-1\right)+\left(\frac{x+21}{10}-1\right)+\left(\frac{x+31}{30}-1\right)=\left(\frac{x+41}{40}-1\right)+\left(\frac{x+101}{50}-2\right)\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{20}+\frac{x+1}{30}=\frac{x+1}{40}+\frac{x+1}{50}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{20}+\frac{x+1}{30}-\frac{x+1}{40}-\frac{x+1}{50}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{20}+\frac{1}{30}-\frac{1}{40}-\frac{1}{50}\right)=0\)
Mà \(\left(\frac{1}{10}+\frac{1}{20}+\frac{1}{30}-\frac{1}{40}-\frac{1}{50}\right)\ne0\)
Nên x + 1 = 0
=> x = -1
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
Lời giải: Giải phương trình với tập xác định
Tập xác định của phương trình
\(x\in\infty-\infty\)
\(\frac{19x+67}{90}=\frac{15x+83}{56}\Rightarrow\left(19x=67\right)56=90\left(15x+83\right)\)
Kết quả : \(-13\)
kq đúng nhưng mk k biết mấy cái phương trình đó vì mk mới lớp 7
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
\(\Leftrightarrow\frac{x+4}{9}+\frac{x+11}{8}+\frac{x+16}{7}+\frac{x+19}{6}=10\)
\(\Leftrightarrow\left(\frac{x+4}{9}-1\right)+\left(\frac{x+11}{8}-2\right)+\left(\frac{x+16}{7}-3\right)+\left(\frac{x+19}{6}-4\right)=0\)
\(\Leftrightarrow\frac{x+4-9}{9}+\frac{x+11-16}{8}+\frac{x+16-21}{7}+\frac{x+19-24}{6}=0\)
\(\Leftrightarrow\frac{x-5}{9}+\frac{x-5}{8}+\frac{x-5}{7}+\frac{x-5}{6}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{9}+\frac{1}{8}+\frac{1}{7}+\frac{1}{6}\right)=0\)
\(\Leftrightarrow x-5=0\)
\(\Leftrightarrow x=5\)
V...
a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{2}{63}\)
b) \(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}\)
Vậy.........
mỗi hạng tử ở 2 vế cộng với 1 (có nghĩa là cộng 2 vế với 3 xong chia đều ra 3 hạng tử mỗi hạng tử cộng với 1)
Sau đó sẽ dẫn đến tất cả các hạng tử đều có chung tử số rồi nhóm tử ra ngoài là được
\(\frac{\frac{41}{10}}{\frac{9}{4}}=\frac{x}{7,3}\)
\(\Rightarrow x.\frac{9}{4}=\frac{41}{10}.7,3\)
\(\Rightarrow x.\frac{9}{4}=\frac{2993}{100}\)
\(\Rightarrow x=\frac{2993}{100}:\frac{9}{4}\)
\(\Rightarrow x=\frac{2993}{225}\)
Vậy \(x=\frac{2993}{225}.\)
Chúc bạn học tốt!
\(\frac{\frac{41}{10}}{\frac{9}{4}}=\frac{x}{7,3}\\ \Rightarrow\frac{9}{4}x=\frac{41}{10}\cdot7,3\left(\text{tính chất của tỉ lệ thức}\right)\\ x=\frac{\frac{41}{10}\cdot7,3}{\frac{9}{4}}=\frac{2993}{225}\)
Vậy \(x=\frac{2993}{225}\)