K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2016

Ơ !!??!?!!?!! chả nhìn thấy x ở đâu cả

21 tháng 6 2016

\(\frac{10}{3}:\frac{5}{2}=\frac{10}{3}.\frac{2}{5}=\frac{20}{15}=\frac{3}{4}\)

a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)

Tự làm nốt và kết luận 

b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)

Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)

Vậy ....

28 tháng 8 2016

ta có 

\(\frac{x}{3}\)=\(\frac{y}{2}\)=> \(\frac{x}{9}\)=\(\frac{y}{6}\)

\(\frac{y}{3}\)=\(\frac{z}{5}\)=>\(\frac{y}{6}\)=\(\frac{z}{10}\)

=>\(\frac{x}{9}\)=\(\frac{y}{6}\)=\(\frac{z}{10}\)

  Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    \(\frac{x}{9}\)=\(\frac{y}{6}\)=\(\frac{z}{10}\)=> \(\frac{2x}{18}\)=\(\frac{y}{6}\)=\(\frac{3z}{30}\)=\(\frac{2x-y+3z}{18-6+30}\)=\(\frac{42}{42}\)=1

Ta lại có:

     \(\frac{2x}{18}\)= 1=> 2x=18=>x=9

       \(\frac{y}{6}\)= 1 =>y=6

      \(\frac{3z}{30}\)= 1=>3z=30=>z=10

 Vậy x=9 ; y=6 và z=10

\(\Rightarrow xy.yz.xz=\left(xyz\right)^2=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{1}{25}\Rightarrow xyz=\frac{1}{5};\frac{-1}{5}\)

xét xyz=-1/5=>x=1/2;y=2/3;z=-3/5

xét xyz=1/5=>x=-1/2;y=-2/3;z=3/5

Vậy (x;y;z)=(1/2;2/3;-3/5);(-1/2;-2/3;3/5)

 

4 tháng 4 2019

Trả lời giúp chúng mik đi mai thầy kiểm tra

4 tháng 4 2019

1,\(\frac{xyz+x+z}{yz+1}=\frac{10}{7}\Rightarrow\frac{x\left(yz+1\right)+z}{yz+1}=\frac{10}{7}\)

\(\Leftrightarrow x+\frac{z}{yz+1}=\frac{10}{7}\Leftrightarrow x+\frac{1}{\frac{yz+1}{z}}=\frac{10}{7}\)

\(\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{3}{7}=1+\frac{1}{\frac{7}{3}}=1+\frac{1}{2+\frac{1}{3}}\)

Nên x=1,y=2,z=3 bài này thiếu điều kiện x,y,z nhé

2,bài 2 để mai anh xem nha

9 tháng 11 2016

Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=49.\frac{12}{49}=12\)

\(\Rightarrow\begin{cases}x=12.\frac{3}{2}=18\\y=12.\frac{4}{3}=16\\z=12.\frac{5}{4}=15\end{cases}\)

Vậy x = 18; y = 16; z = 15

9 tháng 11 2016

Giải:
Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

+) \(\frac{x}{\frac{3}{2}}=12\Rightarrow x=18\)

+) \(\frac{y}{\frac{4}{3}}=12\Rightarrow y=16\)

+) \(\frac{z}{\frac{5}{4}}=12\Rightarrow z=15\)

Vậy bộ số \(\left(x,y,z\right)\)\(\left(18,16,15\right)\)

21 tháng 8 2020

Bài làm:

Đặt \(\frac{x}{7}=\frac{y}{5}=\frac{z}{3}=k\)

=> \(\hept{\begin{cases}x=7k\\y=5k\\z=3k\end{cases}}\)

Mà \(yz=135\Leftrightarrow15k^2=135\Leftrightarrow k^2=9\Rightarrow k=\pm3\)

=> \(\hept{\begin{cases}x=\pm21\\y=\pm15\\z=\pm9\end{cases}}\)

21 tháng 8 2020

Đặt \(\frac{x}{7}=\frac{y}{5}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=7k\\y=5k\\z=3k\end{cases}}\)

Khi đó yz = 135

<=> 5k.3k = 135

=> 15.k2 = 135

=> k2 = 9

=> k = \(\pm\)3

Nếu k = 3 => x = 21 ; y = 15 ; z = 9

Nếu k = -3 => x = -21 ; y = -15 ; z = -9

Vậy các cặp (x;y;z) thỏa mãn bài toán là (21 ; 15 ; 9) ; (-21 ; - 15 ; -9)

13 tháng 10 2015

Ta có: \(\frac{x-1+1}{2+1}=\frac{y-2+2}{3+2}=\frac{z-3+3}{4+3}=\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x}{3}=\frac{2y}{10}=\frac{3z}{21}=\frac{-10}{14}=\frac{-5}{7}\)

\(\Rightarrow\frac{x}{3}=\frac{-5}{7}\Rightarrow x=\frac{-15}{7};\frac{y}{5}=\frac{-5}{7}\Rightarrow y=\frac{-25}{7};\frac{z}{7}=\frac{-5}{7}\Rightarrow z=-5\)