K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để A nguyên thì 2 chia hết cho x

=>\(x\in\left\{1;-1;2;-2\right\}\)

b: Để B nguyên thì \(1-x\in\left\{1;-1;3;-3\right\}\)

=>\(x\in\left\{0;2;-2;4\right\}\)

c: C nguyên thì \(2x+7\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{-3;-4;-1;-6\right\}\)

d: D nguyên

=>x+1+1 chia hết cho x+1

=>\(x+1\in\left\{1;-1\right\}\)

=>\(x\in\left\{0;-2\right\}\)

e: E nguyên

=>x-1+5 chia hết cho x-1

=>\(x-1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{2;0;6;-4\right\}\)

f: G nguyên

=>2x+6 chia hết cho 2x-1

=>2x-1+7 chia hết cho 2x-1

=>\(2x-1\in\left\{1;-1;7;-7\right\}\)

=>\(x\in\left\{1;0;4;-3\right\}\)

h: H nguyên

=>11x+22-37 chia hết cho x+2

=>\(x+2\in\left\{1;-1;37;-37\right\}\)

=>\(x\in\left\{-1;-3;35;-39\right\}\)

19 tháng 7 2017

Nguyễn Việt Hoàng

Nguyễn Thị Thu Thủy

Đinh Đức Hùng

2 tháng 2 2017

k minh minh giai cho

a: \(\Leftrightarrow2x-2+4x+8=-12\)

=>6x+6=-12

=>6x=-18

hay x=-3

b: \(\Leftrightarrow-10x-15-12+9x=13\)

=>-x-27=13

=>-x=40

hay x=-40

c: \(\Leftrightarrow-10x+70+20-5x=-15\)

\(\Leftrightarrow-15x=-105\)

hay x=7

d: \(\Leftrightarrow8x-12-7x+14=10\)

=>x+2=10

hay x=8

e: \(\Leftrightarrow-12x-18+14x+2=2\)

=>2x-16=2

hay x=9

Nâng cao phát triển và Bồi dưỡng HSG Toán lớp 6 Đăng ký học trực tuyến: 0919.281.916 Thầy Thích – 0919.281.916 Email: doanthich@gmail.com f. |x| - (-2) = (-1) g. 5 - |x + 1| = 30 h. |x - 1| - x + 1 = 0 i. |2 - x| + 2 = x j. |x + 1| = |x - 2| k. 5 - |2x - 1| = (-7) l. |x + 2| 5 m. |x - 1| > 2 n. |x| = |23| và x < 0 o. |x| = |-2| và x > 0 p. (-1) + 3 + (-5) + 7 + … + x = 600 q. 2 + (-4) + 6 + (-8) + … + (-x) = - 2000 Bài 2: Tìm x Z sao cho: a. (x + 1).(3 - x) =...
Đọc tiếp
  1. Nâng cao phát triển và Bồi dưỡng HSG Toán lớp 6 Đăng ký học trực tuyến: 0919.281.916 Thầy Thích – 0919.281.916 Email: doanthich@gmail.com f. |x| - (-2) = (-1) g. 5 - |x + 1| = 30 h. |x - 1| - x + 1 = 0 i. |2 - x| + 2 = x j. |x + 1| = |x - 2| k. 5 - |2x - 1| = (-7) l. |x + 2| 5 m. |x - 1| > 2 n. |x| = |23| và x < 0 o. |x| = |-2| và x > 0 p. (-1) + 3 + (-5) + 7 + … + x = 600 q. 2 + (-4) + 6 + (-8) + … + (-x) = - 2000 Bài 2: Tìm x Z sao cho: a. (x + 1).(3 - x) = 0 b. (x - 2).(2x - 1) = 0 c. (3x + 9).(1 – 3x) = 0 d. (x2 + 1).(81 – x2 ) = 0 e. (x - 5)5 = 32 f. (2 - x)4 = 81 g. (31 – 2x)3 = -27 h. (x - 2).(7 - x) > 0 i. |x - 7| 3 Bài 3: Tìm x, y Z sao cho: a. |x + 25| + |-y + 5| = 0 b. |x - 1| + |x – y + 5| 0 c. |6 – 2x| + |x - 13| = 0 d. |x| + |y + 1| = 0 e. |x| + |y| = 2 f. |x| + |y| = 1 g. x.y = - 28 h. (2x - 1).(4y + 2) = - 42
  2. 3. Nâng cao phát triển và Bồi dưỡng HSG Toán lớp 6 Đăng ký học trực tuyến: 0919.281.916 Thầy Thích – 0919.281.916 Email: doanthich@gmail.com i. x + xy + y = 9 j. xy – 2x – 3y = 5 k. (5x + 1).(y - 1) = 4 l. 5xy – 5x + y = 5  DẠNG 3: BÀI TOÁN LIÊN QUAN GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT (MAX - MIN) Bài 1: Tìm x Z sao cho: a. x + 23 là số nguyên âm lớn nhất. b. x + 99 là số nguyên âm nhỏ nhất có hai chữ số c. 9 |x - 3| < 11 d. Tìm giá trị nhỏ nhất và lớn nhất của x sao cho: 1986 < |x + 2| < 2012 Bài 2: Tìm các giá trị lớn nhất hoặc nhỏ nhất của các biểu thức sau (x, y Z) a. A = |x - 3| + 1 b. B = |6 – 2x| - 5 c. C = 3 - |x + 1| d. D = - 100 - |7 - x| e. E = - (x + 1)2 - |2 - y| + 11 f. F = (x - 1)2 + |2y + 2| - 3 g. G = (x + 5)2 + (2y - 6)2 + 1 h. H = - 3 – (2 - x)2 – (3- y)2 i. I = 5 - |2x + 6| - |7 - y|  DẠNG 4: BỘI VÀ ƯỚC TRONG SỐ NGUYÊN Tìm x Z sao cho: a. (x – 4) (x + 1) b. (2x + 5) (x - 1) c. (4x + 1) (2x + 2) d. (3x + 2) (2x - 1)
  3. 4. Nâng cao phát triển và Bồi dưỡng HSG Toán lớp 6 Đăng ký học trực tuyến: 0919.281.916 Thầy Thích – 0919.281.916 Email: doanthich@gmail.com e. (x2 – 2x + 3) (x - 1) f. (3x – 1) (x - 4) g. (x2 + 3x + 9) (x + 3) h. (2x2 – 10x + 5) (x - 5)  DẠNG 5: MỘT SỐ BÀI TOÁN CHỨNG MINH Bài 1: Cho A = a – b + c; B = -a + b – c, với a, b, c Z. Chứng minh rằng: A và B là hai số đối nhau. Bài 2: Chứng minh rằng: (a - b) – (b + c) + (c - a) – (a – b - c) = - (a + b - c). Bài 3: Cho a, b, c N và a 0. Chứng tỏ rằng biểu thức P luôn âm, biết: P = a.(b - a) – b(a - c) – bc. Bài 4: Chứng minh các đẳng thức sau: a. (a - b) + (c - d) – (a - c) = - (b + d) b. (a - b) – (c - d) + (b + c) = a + d Bài 5: Cho x, y thuộc số nguyên. Chứng minh rằng: 6x + 11y là bội của 31 khi và chỉ khi x + 7y là bội của 31. Bài 6: Cho x, y thuộc số nguyên. Chứng minh rằng: 5x + 47y là bội của 17 khi và chỉ khi x + 6y là bội của 17. Bài 7: Chứng minh rằng với mọi a thuộc số nguyên, ta có: a. (a - 1).(a + 2) + 12 không là bội của 9. b. 49 không là ước của (a + 2)(a + 9) + 21. 
2
2 tháng 4 2017

cái gì thế này???????????????????????????????????

31 tháng 10 2021

mik lp 6 nhưng nhìn bài của bn mik ko hiểu j cả luôn ý

2 tháng 2 2017

ai giúp minh đi cần quá gấp

16 tháng 3 2022

`Answer:`

a. \(x+12=3\Leftrightarrow x=3-12\Leftrightarrow x=-9\)

b. \(2x-15=21\Leftrightarrow2x=21+15\Leftrightarrow2x=36\Leftrightarrow x=36:2\Leftrightarrow x=18\)

c. \(13-3x=4\Leftrightarrow-3x=4-13\Leftrightarrow-3x=-9\Leftrightarrow x=-9:-3\Leftrightarrow x=3\)

d. \(2\left(x-2\right)+4=12\Leftrightarrow2x-4+4=12\Leftrightarrow2x=12\Leftrightarrow x=12:2\Leftrightarrow x=6\)

e. \(15-3\left(x-2\right)=21\Leftrightarrow15-3x+6=21\Leftrightarrow-3x=21-15-6\Leftrightarrow-3x=0\Leftrightarrow x=0\)

g. \(25+4\left(3-x\right)=1\Leftrightarrow25+12-4x=1\Leftrightarrow37-4x=1\Leftrightarrow-4x=-36\Leftrightarrow x=9\)

h. \(3x+12=2x-4\Leftrightarrow3x-2x=-4-12\Leftrightarrow x=-16\)

i. \(14-3x=\left(-x\right)+4\Leftrightarrow-3x+x=4-14\Leftrightarrow-2x=10\Leftrightarrow x=5\)

k. \(2\left(x-2\right)+7=x-25\Leftrightarrow2x-4+7=x-25\Leftrightarrow2x-x=-25-3\Leftrightarrow x=-28\)

19 tháng 6 2019

a) \(x+xy-y=8\)

\(\Leftrightarrow x.\left(1+y\right)-y=8\)

\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)

\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)

\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)

Lập bảng tìm tiếp

19 tháng 6 2019

b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)

Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)

Vậy ...