K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

Để f(x) > 0 thì:

th1: \(\hept{\begin{cases}2-x>0\\x+3>0\\4-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x>-3\\x< 4\end{cases}\Leftrightarrow}-3< x< 2}\)

th2: \(\hept{\begin{cases}2-x< 0\\x+3< 0\\4-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< -3\\x< 4\end{cases}\Leftrightarrow}2< x< -3}\)(vô lí)

th3:\(\hept{\begin{cases}2-x< 0\\x+3>0\\4-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>-3\\x>4\end{cases}\Leftrightarrow}x>4}\)

th4:\(\hept{\begin{cases}2-x>0\\x+3< 0\\4-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -3\\x>4\end{cases}\Leftrightarrow}4< x< -3}\)(vô lí)

Vậy x>-3 và x khác 4 thì f(x) > 0

14 tháng 11 2017

a, f(x)= (x^5-x^4)-(4x^4-4x^3)+(5x^3-5x^2)-(4x^2-4x)+(4x-4)

         =x^4(x-1)-4x^3(x-1)+5x^2(x-1)-4x(x-1)+4(x-1)

        =(x^4-4x^3+5x^2-4x+4)(x-1)

       =[(x^4-2x^3)-(2x^3-4x^2)+(x^2-2x)-(2x-4)](x-1)

       =(x^3-2x^2+x-2)(x-2)(x-1)

      =(x^2+1)(x-2)^2(x-1)

20 tháng 8 2017

theo định lí Vi-Et nha bạn

1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\left(nhận\right)\)

2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)

a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

b) Ta có: \(F=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

\(=\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)

c) Để F dương thì F>0

\(\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}>0\)

\(\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ

nên \(\sqrt{x}-2>0\)

\(\Leftrightarrow\sqrt{x}>2\)

hay x>4(nhận)

Vậy: để F dương thì \(x>4\)

d) Để F=3 thì \(\frac{\sqrt{x}}{\sqrt{x}-2}=3\)

\(\Leftrightarrow\sqrt{x}=3\left(\sqrt{x}-2\right)\)

\(\Leftrightarrow\sqrt{x}=3\sqrt{x}-6\)

\(\Leftrightarrow\sqrt{x}-3\sqrt{x}=-6\)

\(\Leftrightarrow-2\sqrt{x}=-6\)

\(\Leftrightarrow\sqrt{x}=3\)

hay x=9(nhận)

Vậy: để F=3 thì x=9

e) Để \(F\in Z\) thì \(\sqrt{x}⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2+2⋮\sqrt{x}-2\)

\(\sqrt{x}-2⋮\sqrt{x}-2\forall x\) thỏa mãn ĐKXĐ

nên \(2⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\inƯ\left(2\right)\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;-2;-1\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{3;4;0;1\right\}\)

hay \(x\in\left\{9;16;0;1\right\}\)(nhận)

Vậy: để \(F\in Z\) thì \(x\in\left\{9;16;0;1\right\}\)

11 tháng 3 2018

\(f\left(x\right)=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)+1\)  

\(f\left(x\right)=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+1\)

\(f\left(x\right)=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)+1\)

\(f\left(x\right)=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+1\)

\(f\left(x\right)=\left(x^2+7x+11-1\right)\left(x^2+7x+11+1\right)+1\)

\(f\left(x\right)=\left(x^2+7x+11\right)^2-1+1\)

\(f\left(x\right)=\left(x^2+7x+11\right)^2\Leftrightarrowđpcm\)

14 tháng 3 2018

ƒ (x)=(x+2)(x+3)(x+4)(x+5)+1  

ƒ (x)=(x+2)(x+5)(x+3)(x+4)+1

ƒ (x)=(x2+5x+2x+10)(x2+4x+3x+12)+1

ƒ (x)=(x2+7x+10)(x2+7x+12)+1

ƒ (x)=(x2+7x+11−1)(x2+7x+11+1)+1

ƒ (x)=(x2+7x+11)2−1+1

ƒ (x)=(x2+7x+11)2⇔đpcm