Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) ĐKXĐ: \(-1\le x\le3\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\\x\ne3\end{matrix}\right.\).
d) ĐKXĐ: \(x< \dfrac{3}{5}\).
1,Điều kiện để \(\sqrt{a}\) có nghĩa là \(a\ge0\)
2, a, để căn thức \(\sqrt{2x+6}\) có nghĩa \(\Leftrightarrow2x+6\ge0\)
\(\Leftrightarrow2x\ge-6\)
\(\Leftrightarrow x\ge-3\)
b, để căn thức \(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow2x-3\ge0\)
\(\Leftrightarrow2x\ge3\)
\(\Leftrightarrow x\ge\frac{3}{2}\)
a) \(x\ne\sqrt{3};x\ne-\sqrt{3}\)
b)\(x\ne3;x\ne-1\)
c)\(x\ne0;x\ne-2\)
d)\(x\ne3;x\ne2\)
a) Căn thức có nghĩa\(\Leftrightarrow\frac{1}{3}x+1\ge0\Leftrightarrow\frac{1}{3}x\ge-1\Leftrightarrow x\ge-3\)
b) Căn thức có nghĩa\(\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
\(\sqrt{2x+3}\) có nghĩa khi
\(2x+3\ge0\)
\(\Leftrightarrow2x\ge-3\)
\(\Leftrightarrow x\ge-\frac{3}{2}\)
Vậy .....
1) \(\sqrt{-3x+1}\) có nghĩa \(\Leftrightarrow\sqrt{-3x+1}\ge0\)
\(\Leftrightarrow-3x+1\ge0\Leftrightarrow-3x\ge-1\Leftrightarrow x\le\frac{1}{3}\)
2) \(\sqrt{2x+3}\) có nghĩa \(\Leftrightarrow\sqrt{2x+3}\ge0\Leftrightarrow2x+3\ge0\Leftrightarrow2x\ge-3\Leftrightarrow x\ge\frac{-3}{2}\)
3) \(\sqrt{\frac{-1}{2x+1}}\) có nghĩa \(\Leftrightarrow\sqrt{\frac{-1}{2x+1}}\ge0\Leftrightarrow\frac{-1}{2x+1}\ge0\Leftrightarrow2x+1< 0\Leftrightarrow2x< -1\Leftrightarrow x< \frac{-1}{2}\)
a: ĐKXĐ: 5-4x>=0
=>x<=5/4
b: ĐKXĐ: x thuộc R
c: ĐKXĐ: x-2<0
=>x<2
a)
\(\sqrt{2x+10}+\frac{1}{x^2+4}\)
Căn thức có nghĩa khi
\(\begin{cases}2x+10\ge0\\x^2-4\ne0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge-5\\\begin{cases}x\ne2\\x\ne-2\end{cases}\end{cases}\)
Vật căn thức có nghĩa khi \(x>-6;x\ne\pm2\)
b)
\(\sqrt{\frac{x^2+1}{x-1}}\)
Căn thưc có nghĩa khi
\(\begin{cases}\left(x^2+1\right)\left(x-1\right)\ge0\\x-1\ne0\end{cases}\)
Mà \(x^2+1\ge1\) => x - 1 >0
\(x+1>0\)
\(\Leftrightarrow x>-1\)
mik ko biết
Để y có nghĩa
\(\Leftrightarrow\hept{\begin{cases}x^2-5x+6\ge0\\x-1\ge0\\\sqrt{x-1}\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-5x+25-19\ge0\\x\ge1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)^2-19\ge0\\x\ge1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)^2\ge19\\x\ge1\end{cases}}\)
Đến đây tự làm được rồi nhỉ ??