Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^2+2x+5}{x+1}=\frac{\left(x^2+2x+1\right)+4}{x+1}=\frac{\left(x+1\right)^2+4}{x+1}=x+1+\frac{4}{x+1}\)
Để \(A=x+1+\frac{4}{x+1}\) là số nguyên <=> \(\frac{4}{x+1}\) là số nguyên
=> x + 1 \(\inƯ\left(4\right)\) = { - 4; - 2; - 1; 1; 2; 4 }
=> x = { - 5; - 3; - 2; 0; 1; 3 }
Vậy x = { - 5; - 3; - 2; 0; 1; 3 }
Để biểu thức A đạt giá trị nguyên thì phân số \(\frac{x^2+2x+5}{x+1}\)phải đạt giá trị nguyên.
\(\Rightarrow x^2+2x+5⋮x+1\)
\(\Rightarrow x.\left(x+1\right)+2x+5-x⋮x+1\)
\(\Rightarrow x+5⋮x+1\)
\(\Rightarrow\left(x+1\right)+4⋮x+1\)
\(\Rightarrow4⋮x+1\)
\(\Rightarrow x+1\inƯ\left(4\right)=\left\{-4;-2;-1;+1;+2;+4\right\}\)
\(\Rightarrow x\in\left\{-5;-3;-2;0;+1;+3\right\}\)
vậy \(x\in\left\{-5;-3;-2;0;+1;+3\right\}\)thì A đạt giá trị nguyên
T/C của gttđ là >= 0 nên
a) GTNN = -4
b) GTLN = 2
c) GTNN = 2
\(\left|x-4\right|+\left|x-5\right|+\left|x-6\right|\)
\(=\left|x-4\right|+\left|6-x\right|+\left|x-5\right|\)
\(\ge\left|x-4+6-x\right|+\left|x-5\right|=2+\left|x-5\right|\ge2\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}\left(x-4\right)\left(6-x\right)\ge0\\x-5=0\end{matrix}\right.\)
\(\Rightarrow x=5\)
ai trả lời đi