Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(<=>x^2-\sqrt{3}x-\sqrt{5}x+\sqrt{15}=0<=>x\left(x-\sqrt{3}\right)-\sqrt{5}\left(x-\sqrt{3}\right)=0<=>\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)=0\)
<=>Tự làm
\(\sqrt{3}-\frac{5}{2}>\sqrt{3}-4\text{ vì }-\frac{5}{2}>-4\)
\(\Rightarrow2.\left(\sqrt{3}-\frac{5}{2}\right)>\sqrt{3}-4\)
\(\Rightarrow2.\sqrt{3}-5>\sqrt{3}-4\)
Ta có: \(\sqrt{7-3\sqrt{5}}\)
\(=\frac{\sqrt{14-6\sqrt{5}}}{\sqrt{2}}\)
\(=\frac{\sqrt{9-2\cdot3\cdot\sqrt{5}+5}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(3-\sqrt{5}\right)^2}}{\sqrt{2}}\)
\(=\frac{\left|3-\sqrt{5}\right|}{\sqrt{2}}\)
\(=\frac{3-\sqrt{5}}{\sqrt{2}}\)(Vì \(3>\sqrt{5}\))
Bài 1 :
(3xy-1/2).(4x2y-6xy2+1) = 12x3y2 - 18x2y3 + 3xy - 2x2y + 3xy2 - 1/2
Bài 4:
\(4x^2+8x+7=\left(4x^2+8x+4\right)+3=\left(2x+2\right)^2+3\ge3>0 \)
\(x^2-\left(\sqrt{3}+\sqrt{5}\right).x+\sqrt{3}.\sqrt{5}=0\)
\(\Leftrightarrow x^2-\sqrt{3}.x-\sqrt{5}.x+\sqrt{3}.\sqrt{5}=0\)
\(\Leftrightarrow x^2-\sqrt{3}.x-\sqrt{5}.x+\sqrt{3}.\sqrt{5}=0\)
\(\Leftrightarrow x\left(x-\sqrt{3}\right)-\sqrt{5}\left(x-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{5}\right)\left(x-\sqrt{3}\right)=0\)
\(\Leftrightarrow\int^{x-\sqrt{5}=0}_{x-\sqrt{3}=0}\Leftrightarrow\int^{x=\sqrt{5}}_{x=\sqrt{3}}\)
Vậy x \(\in\left\{\sqrt{3};\sqrt{5}\right\}\)