Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n+1}{n-2}\)ĐK : \(n\ne2\)
\(=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
Ta có : \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Để \(\left(n+1\right)⋮\left(n-2\right)\)thì \(3⋮\left(n-2\right)\)hay \(\left(n-2\right)\)là \(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)
Do đó :
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
Vậy .....................
~ Hok tốt ~
Ta có
A = \(\frac{n-3}{2n-1}-\frac{n-5}{2n-1}\)
= \(\frac{(n-3)-(n-5)}{2n-1}\)
= \(\frac{n-3-n+5}{2n-1}\)
= \(\frac{n-n-3+5}{2n-1}\)
= \(\frac{2}{2n-1}\)
Để \(\frac{2}{2n-1}\inℕ\)
=> \(2⋮2n-1\)
=> \(2n-1\inƯ\left(2\right)\)
=> \(2n-1\in\left\{1;2\right\}\)
Xét từng trường hợp ta có :
+) 2n - 1 = 1
=> 2n = 1 + 1
=> 2n = 2
=> n = 2 : 2
=> n = 1 (chọn)
+) 2n - 1 = 2
=> 2n = 2 + 1
=> 2n = 3
=> n = 3 : 2
=> n = 1,5 (loại)
Vậy n = 1
\(A=\frac{n-3}{2n-1}-\frac{n-5}{2n-1}=\frac{\left(n-3\right)-\left(n-5\right)}{2n-1}=\frac{2}{2n-1}\)
Để \(A\in Z\)thì \(\frac{2}{2n-1}\in Z\)hay \(\left(2n-1\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
2n - 1 | -2 | -1 | 1 | 2 |
n | -1/2 | 0 | 1 | 3/2 |
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1;\frac{3}{2}\right\}\)
Ta co:n+1/n-2
=n-2+3/n-2
Để A là số nguyên thì n-2+3phai chia hết cho n-2
Xét n-2+3 có n-2 chia hết cho n-2 nên suy ra 3 cũng phải chia hết cho n-2
Vậy n-2 là Ư(3)=-1;-3;1;3
Nếu n-2=-1 => n=-1+2=1
Nếu n-2=-3 => n=-3+2=-1
Nếu n-2=1 => n=1+2=3
Nếu n-2=3 =>n=3+2=5
\(a,2.\left|x+1\right|-3=5\)
\(\Rightarrow2.\left|x+1\right|=5+3\)
\(\Rightarrow2.\left|x+1\right|=8\)
\(\Rightarrow\left|x+1\right|=8:2\)
\(\Rightarrow\left|x+1\right|=4\)
\(\Rightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Vậy : x = 3 hoặc x = -5
b) Để A có giá trị nguyên thì n + 1 \(⋮\)n - 2
Ta có : n + 1 = ( n - 2 ) + 3
=> n + 1 \(⋮\)n - 2
khi ( n - 2 ) + 3 \(⋮\) n - 2
=> 3 \(⋮\)n - 2
=> n - 2 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
Với n - 2 = 1 => n = 3
Với n - 2 = -1 => n = 1
Với n - 2 = 3 => n = 5
Với n - 2 = -3 => n = -1
Vậy : n \(\in\){ 3 ; 1 ; 5 ; -1 }