Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X x (1/2+1/4+1/8+1/16+1/32+1/64+1/128) = 127/128
X x 127/128 = 127/128
X = 127/128 : 127/128
X = 1
\(\frac{127}{128}\times x=1\)
\(\Rightarrow x=\frac{128}{127}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(2\times A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(2\times A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\)
\(A=1-\frac{1}{128}\)
\(A=\frac{127}{128}\)
\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
\(2\times B=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)
\(B=1-\frac{1}{16}=\frac{15}{16}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\Leftrightarrow4\times x+\frac{15}{16}=1\)
\(\Leftrightarrow4\times x=\frac{1}{16}\)
\(\Leftrightarrow x=\frac{1}{64}\)
a. 128 - 3 x (X + 2) = 23
3 x (X + 2) = 128 - 23
X + 2 = 105 : 3
X = 35 - 2
X = 33
b. (12 x X - 64) x 8 = 4,64
12 x X - 64 = 4,64 : 8
12 x X = 0,58 + 64
X = 64,58 : 12
X = \(\frac{3229}{600}\)
c. [(4 x X + 28) x 3 + 55] : 5 = 35
[(4 x X + 28) x 3 + 55] = 35 x 5
(4 x X + 28) x 3 = 175 - 55
4 x X + 28 = 120 : 3
4 x X = 40 - 28
X = 12 : 4
X = 3
d. 720 : [41 - (2 x X - 5)] = 8 x 5
41 - (2 x X - 5) = 720 : (8 x 5)
2 x X - 5 = 41 - 18
2 x X = 23 + 5
X = 28 : 2
X = 14
x nhỏ : dấu nhân
X lớn : X
a ) \(\frac{2003\times14+1988+2001+2002}{2002+2002\times503+504\times2002}\)
= \(\frac{\left(2002+1\right)\times14+1988+2001\times2002}{2002\times\left(1+503+504\right)}\)
= \(\frac{2002\times14+14+1998+2001\times2002}{2002\times1008}\)
= \(\frac{2002\times14+2002+2001\times2002}{2002\times1008}\)
= \(\frac{2002\times\left(14+1+2001\right)}{2002\times1008}\)
= \(\frac{2016}{1008}\)
= 2
b ) Đặt A = 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=> 2A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
=> 2A - A = ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 ) - ( 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 )
=> A = 1/2 - 1/128
A = 63/128