Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+2\sqrt{2x^2+2x^3}=0\) ( ĐK : \(x\ge0\))
\(\Leftrightarrow x+2\sqrt{x^2\left(2+2x\right)}=0\)
\(\Leftrightarrow x\cdot2x\sqrt{2+2x}=0\) ( Vì \(x\ge0\))
\(\Leftrightarrow x\left(1+2\sqrt{2+2x}\right)=0\)
\(\Leftrightarrow x=0\)
( VÌ \(x\ge0\)\(\Rightarrow2x\ge0\Rightarrow1+2\sqrt{2+2x}>0\))
Vậy \(S=\left\{0\right\}\)
a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)
Thay x-y=7 vào biểu thức (1), ta được:
\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)
Vậy: Khi x-y=7 thì A=100
b) Ta có: \(x+y=2\)
\(\Leftrightarrow\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy+10=4\)
\(\Leftrightarrow2xy=-6\)
\(\Leftrightarrow xy=-3\)
Ta có: \(A=x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)
Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:
\(A=2\cdot\left(10+3\right)=2\cdot13=26\)
Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26
\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)
\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)
\(x^3+2\sqrt{2}x^2+2x=0\)
\(x\left(x^2+2\sqrt{2}x+2\right)=0\)
\(x\left(x+\sqrt{2}\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\\left(x+\sqrt{2}\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\sqrt{2}\end{cases}}\)
Vậy \(S=\left\{0;-\sqrt{2}\right\}\)
\(x^3+2\sqrt{2}x^2+2x=0\)
\(x\left(x+2\cdot x\sqrt{2}+2\right)=0\)
\(x\left(x+\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x+\sqrt{2}\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\sqrt{2}\end{cases}}\)
Vậy ....
\(x+2\sqrt{2}x^2+2x^3=0\)
\(\Leftrightarrow x\left(1+2\sqrt{2}x+2x^2\right)=0\)
\(\Leftrightarrow x\left(1+\sqrt{2}x\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(1+\sqrt{2}x\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\1+\sqrt{2}x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{\sqrt{2}}\end{cases}}\)
\(x+2\sqrt{2x^2}+2x^3=0\\ x+2.\sqrt{2}.x+2x^3=0\\ x+1.x+2x^3=0\\ 2x+2x^3=0\\ 2x\left(1+x^2\right)=0\)
ta thấy \(x^2+1>0\)nên để \(2x\left(1+x^2\right)=0\)thì 2x=0 vậy x=0
\(x+2\sqrt{2x^2}+2x^3=0\)
\(\Rightarrow\)\(x\left(1+\sqrt{2x}+2x^2\right)=0\)
\(x=0\)( 1 ) hoặc \(\left(1+\sqrt{2x}+2x^2\right)=0\)( 2 )
\(2\Leftrightarrow\left(1+\sqrt{2x}\right)^2=0\)
\(\Rightarrow\)\(x=\frac{-1}{\sqrt{2}}\Rightarrow x=\frac{-\sqrt{2}}{2}\)
Vậy \(x=0;x=\frac{-\sqrt{2}}{2}\)
Với \(x\ge0\) , phương trình tương đương : \(x+2\sqrt{2}x+2x^3=0\)
\(\Leftrightarrow x\left(1+2\sqrt{2}+2x^2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\left(n\right)\\2x^2=-1-2\sqrt{2}\left(l\right)\end{cases}}\)
Với x < 0, phương trình tương đương \(x-2\sqrt{2}x+2x^3=0\)
\(\Leftrightarrow x\left(1-2\sqrt{2}+2x^2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\2x^2=2\sqrt{2}-1\end{cases}}\)
Với \(2x^2=2\sqrt{2}-1\Rightarrow x^2=\frac{2\sqrt{2}-1}{2}\Rightarrow\orbr{\begin{cases}x=\sqrt{\frac{2\sqrt{2}-1}{2}}\left(l\right)\\x=-\sqrt{\frac{2\sqrt{2}-1}{2}}\left(n\right)\end{cases}}\)
Vậy phương trình có hai nghiệm là x = 0 hoặc \(x=-\sqrt{\frac{2\sqrt{2}-1}{2}}\)
\(x^3-3x^2+3x-1=-8\)
\(\Leftrightarrow x-1=-2\)
hay x=-1
\(x+2\sqrt{2}x^2+2x^3=2x\left(x+\frac{\sqrt{2}}{2}\right)^2\))