Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x+(x+1)+(x+2)+....+(x+21)=231$
$\underbrace{x+x+....+x}_{22}+(1+2+3+...+21)=231$
$22x+231=231$
$22x=0$
$x=0$
`x/2+x+x/3+x+x+x/4=5 3/4`
`=>3x+x/2+x/3+x/4=23/4`
`=>49/12x=23/4`
`=>x=69/49`
Vậy `x=69/49`
`x-(5/6 -x) =x-2/3`
`x-5/6 +x -x+2/3 =0`
`x = 5/6-2/3 = 5/6 -4/6 = 1/6`
\(\dfrac{1}{2}\) \(\times\) ( \(x\) - \(\dfrac{2}{3}\)) - \(\dfrac{1}{3}\) \(\times\) ( 2\(x\) - 3) = \(x\)
\(\dfrac{1}{2}\) \(\times\) \(\dfrac{3x-2}{3}\) - \(\dfrac{2x-3}{3}\) = \(x\)
\(\dfrac{3x-2}{6}\) - \(\dfrac{4x-6}{6}\) = \(\dfrac{6x}{6}\)
3\(x-2-4x\) + 6 = 6\(x\)
-\(x\) + 4 - 6\(x\) = 0
7\(x\) = 4
\(x\) = \(\dfrac{4}{7}\)
<=> x-[(-x+x+3)-(x+3-x+2)]=0
<=>x-(3-5)=0
<=>x+2=0
<=>x=-2
\(x-\left\{\left[-x+\left(x+3\right)\right]-\left[\left(x-3\right)-\left(x-2\right)\right]\right\}=0\)
\(x-\left\{\left[-x+x+3\right]-\left[x-3-x+2\right]\right\}=0\)
\(x-\left\{3-\left(-1\right)\right\}=0\)
\(x-\left\{3+1\right\}=0\)
\(x-4=0\)
\(x=4\)