K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{3}{4}x-\frac{2}{3}.\left(\frac{3}{5}x-\frac{6}{5}\right)=\frac{1}{7}-\frac{2}{9}x\)

\(\frac{3}{4}x-\frac{2}{5}x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)

\(\left(\frac{3}{4}-\frac{2}{5}\right)x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)

\(\left(\frac{15}{20}-\frac{8}{20}\right)x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)

\(\frac{7}{20}x+\frac{4}{5}=\frac{1}{7}-\frac{2}{9}x\)

\(\frac{1}{7}-\frac{4}{5}=\frac{2}{9}x-\frac{7}{20}x\)

\(\frac{5}{35}-\frac{28}{35}=\left(\frac{2}{9}-\frac{7}{20}\right)x\)

\(\frac{-23}{35}=\left(\frac{40}{180}-\frac{63}{180}\right)x\)

\(\frac{-23}{180}x=\frac{-23}{35}\)

\(x=\frac{-23}{35}:\frac{-23}{180}\)

\(x=\frac{-23}{35}.\frac{180}{-23}\)

\(x=\frac{180}{35}\)

Vậy \(x=\frac{180}{35}\)

Chúc bạn học tốt

13 tháng 8 2017

\(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}\)

\(\Rightarrow\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}+3=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}+3\)

\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+4}{6}+1\right)+\left(\frac{x+5}{5}+1\right)=\left(\frac{x+2}{8}+1\right)\)\(+\left(\frac{x+3}{7}+1\right)+\left(\frac{x+6}{4}\right)\)

\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)

\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}\right)=\left(x+10\right)\left(\frac{1}{8}+\frac{1}{7}+\frac{1}{4}\right)\)

\(\Rightarrow\left(x+10\right)\frac{43}{90}=\left(x+10\right)\frac{29}{56}\)

\(\Rightarrow x+10=0\)

\(\Rightarrow x=-10\)

13 tháng 8 2017

cộng 3 vào cả hai vế nên phương trình vẫn bằng nhau

Ta có \(\frac{x+1}{9}+1+\frac{x+4}{6}+1+\frac{x+5}{5}+1=\frac{x+2}{8}+1+\frac{x+3}{7}+1+\frac{x+6}{4}+1\)

\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)

\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}-\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{4}=0\)

\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)

mà \(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)

\(\Rightarrow x+10=0\)

\(\Leftrightarrow x=-10\)

8 tháng 9 2016

Câu 1:

a)\(\frac{3}{4}-0,25-\left[\frac{7}{3}+\left(-\frac{9}{2}\right)\right]-\frac{5}{6}\)

    \(=\frac{3}{4}-\frac{1}{4}-\frac{14}{6}+\frac{27}{6}-\frac{5}{6}\)

    \(=\frac{1}{2}-\frac{4}{3}\)

     \(=-\frac{5}{6}\)

b)\(7+\left(\frac{7}{12}-\frac{1}{2}+3\right)-\left(\frac{1}{12}+5\right)\)

    \(=7+\frac{1}{12}+3-\frac{1}{12}-5\)

    \(=5\)

8 tháng 9 2016

Câu 2:

\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)

\(-\frac{1}{12}\le\frac{x}{12}< 1-\frac{5}{12}\)

\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)

           Vậy -1\(\le\)x<7

26 tháng 4 2018

Câu b) tạm thời ko bít làm =.= 

Bài 1 : 

\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)

\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)

\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)

\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)

\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)

\(\Leftrightarrow\)\(2^{12}=2x\)

\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)

\(\Leftrightarrow\)\(x=2^{11}\)

\(\Leftrightarrow\)\(x=2048\)

Vậy \(x=2048\)

Chúc bạn học tốt ~ 

26 tháng 4 2018

Bài 1 : 

\(a)\) Ta có : 

\(4+\frac{x}{7+y}=\frac{4}{7}\)

\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)

\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)

\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)

Do đó : 

\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)

\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)

Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)

Chúc bạn học tốt ~