Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4\frac{1}{2}-\frac{2}{5}x\right):\frac{7}{4}=\frac{11}{14}\)
\(\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{11}{14}.\frac{7}{4}=\frac{11}{8}\)
\(\frac{2}{5}x=\frac{9}{2}-\frac{11}{8}\)
\(\frac{2}{5}x=\frac{25}{8}\)
\(x=\frac{25}{8}.\frac{5}{2}=\frac{125}{16}\)
\(\left(4\frac{1}{2}-\frac{2}{5}x\right):\frac{7}{4}=\frac{11}{14}\)
\(\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{11}{14}x\frac{7}{4}\)
\(\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{11}{8}\)
\(\frac{2}{5}x=\frac{9}{12}-\frac{11}{8}\)
\(\frac{2}{5}x=\frac{-5}{8}\)
\(x=\frac{-5}{8}:\frac{2}{5}\)
\(x=\frac{-25}{16}\)
\(\left(x+\frac{1}{4}-\frac{1}{3}\right)\div\left(2+\frac{1}{6}-\frac{1}{4}\right)=\frac{7}{46}\)
\(\Leftrightarrow\left(x+\frac{1}{4}-\frac{1}{6}\right)\div\frac{23}{12}=\frac{7}{46}\)
\(\Leftrightarrow x+\frac{1}{4}-\frac{1}{6}=\frac{7}{46}\times\frac{23}{12}\)
\(\Leftrightarrow x+\frac{1}{4}-\frac{1}{6}=\frac{7}{24}\)
\(\Leftrightarrow x+\frac{1}{4}=\frac{7}{24}+\frac{1}{6}\)
\(\Leftrightarrow x+\frac{1}{4}=\frac{11}{24}\)
\(\Leftrightarrow x=\frac{11}{24}-\frac{1}{4}\)
\(\Leftrightarrow x=\frac{5}{24}\)
Học tốt !
\(x-40\%x=3,6\)
\(\Rightarrow100\%x-40\%x=3,6\)
\(\Rightarrow60\%x=3,6\)
\(\Rightarrow\frac{60}{100}x=3,6\)
\(\Rightarrow x=6\)
\(3\frac{2}{7}x-\frac{1}{3}=-2\frac{3}{4}\)
\(\Rightarrow\frac{23}{7}x-\frac{1}{3}=-\frac{11}{4}\)
\(\Rightarrow\frac{23}{7}x=-\frac{33}{12}+\frac{4}{12}\)
\(\Rightarrow\frac{23}{7}x=\frac{29}{12}\)
\(\Rightarrow x=\frac{29}{12}:\frac{23}{7}=\frac{203}{276}\)
\((2,7.x-1\frac{1}{2})\div\frac{2}{7}=\frac{-21}{4}\) \(3\frac{1}{3}.x+16\frac{3}{4}=-13.25\)
\(2,7.x-1\frac{1}{2}=-\frac{21}{4}\cdot\frac{2}{7}\) \(\frac{10}{3}.x+\frac{67}{4}=-13.25\)
\(2,7.x-\frac{3}{2}=-\frac{3}{2}\) \(\frac{10}{3}.x+\frac{67}{4}=-\frac{53}{4}\)
\(2,7.x=-\frac{3}{2}+\frac{3}{2}\) \(\frac{10}{3}.x=-\frac{53}{4}-\frac{67}{4}\)
\(2,7.x=0\) \(\frac{10}{3}.x=-30\)
\(x=0:2,7\) \(x=-30:\frac{10}{3}\)
\(x=0\) \(x=-9\)
Vậy x=0 Vậy x= -9
\(\left(4.5-2.x\right):\frac{3}{4}=1\frac{1}{3}\) \(1.5+1\frac{1}{4}.x=\frac{2}{3}\)
\(\left(4.5-2.x\right)=1\frac{1}{3}\cdot\frac{3}{4}\) \(1\frac{1}{4}.x=\frac{2}{3}-1.5\)
\(4.5-2.x=\frac{4}{3}\cdot\frac{3}{4}\) \(\frac{5}{4}.x=\frac{2}{3}-\frac{3}{2}\)
\(4.5-2.x=1\) \(\frac{5}{4}.x=-\frac{5}{6}\)
\(2.x=4.5-1\) \(x=-\frac{5}{6}:\frac{5}{4}\)
\(2.x=3.5\) \(x=-\frac{2}{3}\)
\(x=3.5:2\)
\(x=1.75\) Vậy \(x=-\frac{2}{3}\)
Vậy x=1.75
a/ \(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\\3+2^{x+1}=24-\left[16-\left(4-1\right)\right]\)
\(3+2^{x+1}=24-\left(16-3\right)\\ 3+2^{x-1}=24-13\\ 3+2^{x-1}=11\\ 2^{x+1}=11-3\\ 2^{x-1}=8\)
\(2^{x-1}=2^3\\ \Rightarrow x-1=3\\x=3+1\\ x=4\)
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=205550\)
\(\left(x.100\right)+\left(1+2+3+....+100\right)=205550\)
Ta tính tổng \(1+2+3+...+100\\ \) trước
Số các số hạng: \(\left[\left(100-1\right):1+1\right]=100\)
Tổng :\(\left[\left(100+1\right).100:2\right]=5050\)
Thay số vào ta có được:
\(\left(x.100\right)+5050=205550\\ \\ x.100=205550-5050\\ \\x.100=20500\\ \\x=20500:100\\ \\\Rightarrow x=2005\)
\(\frac{11}{4}:\frac{3}{2}:\left|4x-\frac{1}{3}\right|=\frac{7}{2}\)
\(\Leftrightarrow\frac{3}{2}:\left|4x-\frac{1}{3}\right|=\frac{11}{4}:\frac{7}{2}\)
\(\Leftrightarrow\frac{3}{2}:\left|4x-\frac{1}{3}\right|=\frac{11}{14}\)
\(\Leftrightarrow\left|4x-\frac{1}{3}\right|=\frac{3}{2}:\frac{11}{14}\)
\(\Leftrightarrow\left|4x-\frac{1}{3}\right|=\frac{21}{11}\)
\(\Leftrightarrow\orbr{\begin{cases}4x-\frac{1}{3}=\frac{21}{11}\\4x-\frac{1}{3}=-\frac{21}{11}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{37}{66}\\x=-\frac{13}{33}\end{cases}}\)
Bài dưới tương tự