Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow\left(x-\dfrac{2}{5}\right):\dfrac{3}{2}=-\dfrac{5}{4}+\dfrac{5}{2}=\dfrac{5}{4}\)
\(\Leftrightarrow x-\dfrac{2}{5}=\dfrac{5}{4}\cdot\dfrac{3}{2}=\dfrac{15}{8}\)
hay x=91/40
b: \(\Leftrightarrow\left(2.5x-3.6\right)=-1\cdot\dfrac{12}{7}=\dfrac{-12}{7}\)
=>2,5x=66/35
hay x=132/175
c: \(\Leftrightarrow\left(\dfrac{15}{4}-2x\right)=\dfrac{19}{9}:\dfrac{4}{3}=\dfrac{19}{9}\cdot\dfrac{3}{4}=\dfrac{19}{12}\)
=>2x=15/4-19/12=45/12-19/12=26/12
=>x=13/12
\(a,\frac{3}{7}+\left|2x-\frac{1}{2}\right|=\frac{4}{5}\)
\(\Rightarrow\left|2x-\frac{1}{2}\right|=\frac{13}{35}\)
\(\Rightarrow2x-\frac{1}{2}=\pm\left(\frac{13}{35}\right)\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{2}=\frac{13}{35}\\2x-\frac{1}{2}=\frac{-13}{35}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=\frac{61}{70}\\2x=\frac{9}{70}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{61}{140}\\x=\frac{9}{140}\end{cases}}\)
~Study well~
#KSJ
\(b,\frac{3}{4}-4\times\left|2x+1\right|=\frac{1}{2}\)
\(\Rightarrow4\times\left|2x+1\right|=\frac{1}{4}\)
\(\Rightarrow\left|2x+1\right|=\frac{1}{16}\)
\(\Rightarrow2x+1=\pm\left(\frac{1}{16}\right)\)
\(\Rightarrow\orbr{\begin{cases}2x+1=\frac{1}{16}\\2x+1=\frac{-1}{16}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=\frac{-15}{16}\\2x=\frac{-17}{16}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-15}{32}\\x=\frac{-17}{32}\end{cases}}\)
~Study well~
#KSJ
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
a) (x + 1/2) . (2/3 − 2x) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
b) \(\left(x.6\frac{2}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-2+\frac{3}{7}\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-\frac{11}{7}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{11}{7}:\frac{11}{5}=-\frac{11}{7}.\frac{5}{11}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{5}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{5}{7}-\frac{3}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{8}{7}\)
\(\Rightarrow x=-\frac{8}{7}:\frac{44}{7}=-\frac{8}{7}.\frac{7}{44}\)
\(\Rightarrow x=-\frac{2}{11}\)
c) \(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
\(\Rightarrow x\left(3\frac{1}{4}-\frac{7}{6}\right)=\frac{5}{12}+\frac{5}{3}\)
\(\Rightarrow x\left(\frac{13}{4}-\frac{7}{6}\right)=\frac{25}{12}\)
\(\Rightarrow x.\frac{25}{12}=\frac{25}{12}\)
\(\Rightarrow x=\frac{25}{12}:\frac{25}{12}\)
\(\Rightarrow x=1\)
d) \(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
\(\Rightarrow\left(5\frac{8}{17}-\frac{4}{17}\right):x+\frac{22}{7}:\frac{52}{3}=\frac{4}{11}\)
\(\Rightarrow5\frac{4}{17}:x+\frac{33}{182}=\frac{4}{11}\)
\(\Rightarrow\frac{89}{17}:x=\frac{4}{11}-\frac{33}{182}\)
\(\Rightarrow\frac{89}{17}:x=\frac{365}{2002}\)
\(\Rightarrow x=\frac{89}{17}:\frac{365}{2002}\)
\(\Rightarrow x\approx28,7\) (số hơi lẻ)
e) \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x=11\\2x=-\frac{19}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{11}{2}\\x=-\frac{19}{4}\end{array}\right.\)
\(x\div4\frac{1}{3}=-2,5\)
=> \(x\div\frac{13}{3}=\frac{-5}{2}\)
=> \(x=\frac{-65}{6}\)
\(7-\left|2x-1\right|=2\)
=> \(\left|2x-1\right|=5\)
=> \(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Rightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
f, \(x:4\frac{1}{3}=-2,5\)
\(\Leftrightarrow x:\frac{13}{3}=-2,5\Leftrightarrow x=-2,5.\frac{13}{3}=-\frac{65}{6}\)
g, \(7-\left|2x-1\right|=2\)
\(\Leftrightarrow\left|2x-1\right|=5\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)