Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,P=\dfrac{-x+2\sqrt{x}-1+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}:\dfrac{2\sqrt{x}+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ P=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\\ \Rightarrow P=\dfrac{\sqrt{5}-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-1}{\sqrt{5}}=\dfrac{5-\sqrt{5}}{5}\\ c,\dfrac{P}{\sqrt{x}}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\cdot\dfrac{1}{\sqrt{x}}=\dfrac{1}{\sqrt{x}-1}\le\dfrac{1}{0-1}=-1\)
Vậy \(\left(\dfrac{P}{\sqrt{x}}\right)_{max}=-1\Leftrightarrow x=0\)
1: ĐKXĐ: \(-1< x< 1\)
2: ĐKXĐ: \(\left[{}\begin{matrix}x>2\\x\le-1\end{matrix}\right.\)
3: ĐKXĐ: \(\left[{}\begin{matrix}x< -3\\x\ge2\end{matrix}\right.\)
4: ĐKXĐ: \(2< a\le3\)
\(\dfrac{\sqrt{x-1}}{\sqrt{x+3}}=\dfrac{\sqrt{x-2}}{1}\)(Đk x>2;x≠-3)
⇔\(\sqrt{\left(x-2\right)\left(x+3\right)}=\sqrt{x-1}\)
⇔\(\left(x-2\right)\left(x+3\right)=x-1\)
⇔\(x^2+x-6-x+1=0\)
⇔\(x^2-5=0\)
⇔\(x^2=5\)
⇔x=\(\pm\sqrt{5}\)(thỏa điều kiện)
Vậyx=\(\pm\sqrt{5}\)
ĐKXĐ:x khác -3; x≥2
quy đồng và khử mẩu 2 vế ta đc:
\(\sqrt{x-1}=\sqrt{x-2}\cdot\sqrt{x+3}\)Bình phương 2 vế ta đc:
x-1=(x-2)*(x+3)<=> x-1=x2+x-6 <=> x2-5=0
<=>\(\left\{{}\begin{matrix}x=\sqrt{5}\left(nhận\right)\\x=-\sqrt{5}\left(loại\right)\end{matrix}\right.\)
vậy x=\(\sqrt{5}\)