Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
a: \(\left|3x-2\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=4\\3x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b: Ta có: \(\left|5x-3\right|=\left|x-7\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=x-7\\5x-3=7-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-4\\6x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{3}\end{matrix}\right.\)
\(a,\text{Với }x< -2\Rightarrow3-x-x-2=4\\ \Rightarrow-2x=3\Rightarrow x=-\dfrac{3}{2}\left(ktm\right)\\ \text{Với }-2\le x< 3\Rightarrow3-x+x+2=4\\ \Rightarrow0x=-1\Rightarrow x\in\varnothing\\ \text{Với }x\ge3\Rightarrow x-3+x+2=4\\ \Rightarrow2x=5\Rightarrow x=\dfrac{5}{2}\left(ktm\right)\)
Vậy \(x\in\varnothing\)
\(b,\text{Với }x< 2\Rightarrow4-2x+18-6x=21\\ \Rightarrow22-8x=21\Rightarrow x=\dfrac{1}{8}\left(tm\right)\\ \text{Với }2\le x< 3\Rightarrow2x-4+18-6x=21\\ \Rightarrow-4x+14=21\Rightarrow x=-\dfrac{7}{4}\left(ktm\right)\\ \text{Với }x\ge3\Rightarrow2x-4+6x-18=21\\ \Rightarrow8x=43\Rightarrow x=\dfrac{43}{8}\left(tm\right)\)
Vậy \(x\in\left\{\dfrac{1}{8};\dfrac{43}{8}\right\}\)
2:
a: A(x)=0
=>5x-10-2x-6=0
=>3x-16=0
=>x=16/3
b: B(x)=0
=>5x^2-125=0
=>x^2-25=0
=>x=5 hoặc x=-5
c: C(x)=0
=>2x^2-x-3=0
=>2x^2-3x+2x-3=0
=>(2x-3)(x+1)=0
=>x=3/2 hoặc x=-1
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) \(\left|\dfrac{2}{7}\right|\) = \(\dfrac{2}{7}\)
b) \(\left|\dfrac{-5}{6}\right|\) = \(\dfrac{5}{6}\)
c) \(\left|4\dfrac{2}{3}\right|\) = \(4\dfrac{2}{3}\)
d) \(\left|-3,41\right|\) = \(3,41\)
a: =>2x>-6
hay x>-3
e: =>(5-x)/x<0
=>0<x<5
h: \(\Leftrightarrow\dfrac{x+5-x-3}{x+3}< 0\)
\(\Leftrightarrow x+3< 0\)
hay x<-3
g: \(\Leftrightarrow\dfrac{2x+7}{x+4}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{7}{2}\\x< -4\end{matrix}\right.\)
`|2x+1|-3=x+4`
`<=>|2x+1|=x+4+3=x+7(x>=-7)`
`**2x+1=x+7`
`<=>x=7-1=6(tm)`
`**2x+1=-x-7`
`<=>3x=-6`
`<=>x=-2(tm)`
`|3x-5|=1-3x(x<=1/3)`
`**3x-5=1-3x`
`<=>6x=6`
`<=>x=1(l)`
`**3x-5=3x-1`
`<=>-5=-1` vô lý
`|2x+2|+|x-1|=10`
Nếu `x>=1`
`pt<=>2x+2+x-1=10`
`<=>3x+1=10`
`<=>3x=9`
`<=>x=3(tm)`
Nếu `x<=-1`
`pt<=>-2x-2+1-x=10`
`<=>-1-3x=10`
`<=>-11=3x`
`<=>x=-11/3(tm)`
Nếu `-1<=x<=1`
`pt<=>2x+2+1-x=10`
`<=>x+3=10`
`<=>x=7(l)`
Vậy `S={3,-11/3}`
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
b) 2.(x+3)-3(x+4)=1
<=> 2x + 6 - 3x - 12 = 1
<=> -x - 6 = 1
<=> -x = 7
<=> x = -7
Vậy x = -7
a/ Biến đổi đẳng thức đầu bài, ta được:
x2+2x-2x2=4\(\Leftrightarrow\)-x2+2x-4=0\(\Leftrightarrow\)x2-2x+4=0
\(\Leftrightarrow\)(x2-x)-(x-1)+3=0\(\Leftrightarrow\)x(x-1)-(x-1)+3=0\(\Leftrightarrow\)(x-1)2+3=0\(\Leftrightarrow\)(x-1)2=-3 (đẳng thức này không xảy ra với mọi số thực x)
Vậy không có giá trị nào của x thỏa mãn đề bài
b/ Biến đổi đẳng thức đầu bài, ta được:
2x+6-3x-12=1\(\Leftrightarrow\)-x-7=0\(\Leftrightarrow\)x=-7
Vậy giá trị của x cần tìm là -7