Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
\(c,\Rightarrow\left[{}\begin{matrix}-2\left(x+2\right)+\left(4-x\right)=11\left(x< -2\right)\\2\left(x+2\right)+\left(4-x\right)=11\left(-2\le x\le4\right)\\2\left(x+2\right)+\left(x-4\right)=11\left(x>4\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{11}{3}\left(tm\right)\\x=3\left(tm\right)\\x=\dfrac{11}{3}\left(ktm\right)\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{3}\end{matrix}\right.\)
\(a,\Rightarrow\left[{}\begin{matrix}x+\dfrac{5}{2}=3x+1\\x+\dfrac{5}{2}=-3x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{7}{8}\end{matrix}\right.\)
a)
\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)
\(=-27\)
or
\(A=x^3+27-54-x^3=-27\)
b)
\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=8x^3+y^3-8x^3+y^3=2y^3\)
c)
\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)
d)
\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)
\(=6x^2-3x-10\)
a: \(=-2x^2\cdot3x+2x^2\cdot4X^3-2x^2\cdot7+2x^2\cdot x^2\)
\(=8x^5+2x^4-6x^3-14x^2\)
b: \(=2x^3-3x^2-5x+6x^2-9x-15\)
\(=2x^3+3x^2-14x-15\)
c: \(=\dfrac{-6x^5}{3x^3}+\dfrac{7x^4}{3x^3}-\dfrac{6x^3}{3x^3}=-2x^2+\dfrac{7}{3}x-2\)
d: \(=\dfrac{\left(3x-2\right)\left(3x+2\right)}{3x+2}=3x-2\)
e: \(=\dfrac{2x^4-8x^3-6x^2-5x^3+20x^2+15x+x^2-4x-3}{x^2-4x-3}\)
=2x^2-5x+1
a) \(\Leftrightarrow2\left|3x-1\right|=\dfrac{4}{5}\)
\(\Leftrightarrow\left|3x-1\right|=\dfrac{2}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=\dfrac{2}{5}\\3x-1=-\dfrac{2}{5}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{15}\\x=\dfrac{1}{5}\end{matrix}\right.\)
b)TH1: \(x\ge3\)
\(\Leftrightarrow x+5+x-3=9\Leftrightarrow2x=7\Leftrightarrow x=\dfrac{7}{2}\left(tm\right)\)
TH2: \(-5\le x< 3\)
\(\Leftrightarrow x+5-x+3=9\Leftrightarrow8=9\left(VLý\right)\)
TH3: \(x< -5\)
\(\Leftrightarrow-x-5-x+3=9\Leftrightarrow2x=-11\Leftrightarrow x=-\dfrac{11}{2}\left(tm\right)\)
\(a,2.|3x-1|-\dfrac{3}{4}=\dfrac{1}{20}\)
\(2.|3x-1|=\dfrac{1}{20}+\dfrac{3}{4}\)
\(2.|3x-1|=\dfrac{4}{5}\)
\(|3x-1|=\dfrac{4}{5}:2\)
\(|3x-1|=\dfrac{2}{5}\)
\(\Rightarrow3x-1=\pm\dfrac{2}{5}\)
\(3x-1=\dfrac{2}{5}\)
\(3x=\dfrac{2}{5}+1\)
\(3x=\dfrac{7}{5}\)
\(x=\dfrac{7}{5}:3\)
\(x=\dfrac{7}{15}\)
\(3x-1=-\dfrac{2}{5}\)
\(3x=-\dfrac{2}{5}+1\)
\(3x=\dfrac{3}{5}\)
\(x=\dfrac{3}{5}:3\)
\(x=\dfrac{1}{5}\)
a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)
=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)
=> \(\left|2-\frac{3}{2}x\right|=x+6\)
ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)
Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)
=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)
=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)
b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)
=> x = 1/4
hoặc x = 0 hoặc x = 1/2
a) Dễ thấy VT > 0;mà VT=VP
=>VP > 0 => 4x > 0=> x > 0
=>\(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)
=>BT đầu tương đương \(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{3}\right)+\left(x+\frac{1}{6}\right)=4x\)
\(=>3x+1=4x=>x=1\)
a) Để đẳng thức xảy ra thì: x>0 (vì: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{6}\right|>0\) )
Khi đó: \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{3}\right|=x+\frac{1}{3};\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\)
=>\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{6}=4x\)
<=>x=1
Vậy x=1
b)Điều kiện: \(x\ne-3;-10;-21;-34\)
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
<=>\(\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
<=>\(\frac{1}{x+3}-\frac{1}{x+34}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
=>x+34-x-3=x
<=>x=31 (nhận)
Vậy x=31
easy
\(\left(x-3\right)^2=16\)
\(\Rightarrow\left(x-3\right)^2=4^2\)
\(\Rightarrow x-3=4\)
\(\Rightarrow x=4+3\)
\(\Rightarrow x=7\)