K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2022

a) 4x(x + 1) + (3 – 2x)(3 + 2x) = 15

⇔4x2 + 4x + (9 – 4x2) = 15

⇔ 4x2 + 4x + 9 – 4x2 = 15

⇔4x = 15 – 9

⇔x=1,5

b)3x(x – 20012) – x + 20012 = 0

⇔3x(x – 20012) – (x – 20012) = 0

⇔(x – 20012)(3x – 1) = 0

⇔x – 20012 = 0 hay 3x – 1 = 0

⇔x = 20012 hoặc x = \(\dfrac{1}{2}\)

22 tháng 5 2022

`a)4x(x+1)+(3-2x)(3+2x)=15`

`<=>4x^2+4x+9-4x^2=15`

`<=>4x=6`

`<=>x=3/2`

Vậy `S={3/2}`

`b)3x(x-20012)-x+20012=0`

`<=>3x(x-20012)-(x-20012)=0`

`<=>(x-20012)(3x-1)=0`

`<=>` $\left[\begin{matrix} x=20012\\ x=\dfrac{1}{3}\end{matrix}\right.$

Vậy `S={1/3;20012}`

22 tháng 10 2017

a) 4x(x + 1) + (3 – 2x)(3 + 2x) = 15

⇔4x2 + 4x + (9 – 4x2) = 15

⇔ 4x2 + 4x + 9 – 4x2 = 15

⇔4x = 15 – 9

⇔4x = 6

⇔x = 3/2

b)3x(x – 20012) – x + 20012 = 0

⇔3x(x – 20012) – (x – 20012) = 0

⇔(x – 20012)(3x – 1) = 0

⇔x – 20012 = 0 hay 3x – 1 = 0

⇔x = 20012 hoặc x = 1/2

8 tháng 1 2022

mk mới lớp 5 nên ko bt

14 tháng 10 2021

\(a,=x^2-4-x^2-2x-1=-2x-5\\ b,=8x^3-1-8x^3-1=-2\\ 3,\\ a,\Rightarrow x^3+8-x^3+2x=15\\ \Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\\ b,\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\\ \Rightarrow7x=14\Rightarrow x=2\)

14 tháng 10 2021

Bài 2:

a) \(=x^2-4-x^2-2x-1=-2x-5\)

b) \(=8x^3-1-8x^3-1=-2\)

Bài 3:

a) \(\Rightarrow x^3+8-x^3+2x=15\)

\(\Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)

b) \(\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\)

\(\Rightarrow7x=14\Rightarrow x=2\)

a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)

\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)

\(\Leftrightarrow-9x=18\)

hay x=-2

Vậy: S={-2}

b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)

\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)

\(\Leftrightarrow14x=7\)

hay \(x=\dfrac{1}{2}\)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)

\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)

\(\Leftrightarrow5.2x=-6.5\)

hay \(x=-\dfrac{5}{4}\)

Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)

d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)

\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)

\(\Leftrightarrow2x+16=6\)

\(\Leftrightarrow2x=-10\)

hay x=-5

Vậy: S={-5}

e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)

\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)

\(\Leftrightarrow14x=0\)

hay x=0

Vậy: S={0}

a: Ta có: \(\left(8x^2-4x\right):\left(-4x\right)-\left(x+2\right)=8\)

\(\Leftrightarrow-2x+1-x-2=8\)

\(\Leftrightarrow-3x=9\)

hay x=-3

b: Ta có: \(\left(2x^4-3x^3+x^2\right):\left(-\dfrac{1}{2}x^2\right)+4\left(x-1\right)^2=0\)

\(\Leftrightarrow-4x^2+6x-2+4x^2-8x+4=0\)

\(\Leftrightarrow-2x=-2\)

hay x=1

23 tháng 10 2021

e: ta có: \(4x^2+4x-6=2\)

\(\Leftrightarrow4x^2+4x-8=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

f: Ta có: \(2x^2+7x+3=0\)

\(\Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

15 tháng 9 2021

a)\(3x^2-4x=0<=>x(3x-4)=0\)
TH1: x=0

TH2 3x-4=0 <=>x=4/3

KL:.....

b) (x+3)(x−1)+2x(x+3)=0.

<=> (x+3)(x-1+2x)=0

TH1: x+3=0 <=> x=-3

TH2  x-1=0  <=> x=1

KL:.....

c) \(9x^2+6x+1=0. <=>(3x+1)^2=0<=>3x+1=0<=>x=-1/3 ​\)

KL:......
d) \(x^2−4x=4.<=>(x-2)^2=0<=>x-2=0<=>x=2\)

KL:....

15 tháng 9 2021

a) \(3x^2-4x=0\)

\(\Leftrightarrow x\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)

b) \(\left(x+3\right)\left(x-1\right)+2x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{3}\end{matrix}\right.\)

c) \(9x^2+6x+1=0\)

\(\Leftrightarrow\left(3x+1\right)^2=0\)

\(\Leftrightarrow3x+1=0\Leftrightarrow x=-\dfrac{1}{3}\)

d) \(x^2-4x=4\)

\(\Leftrightarrow\left(x-2\right)^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2\sqrt{2}\\x-2=-2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}+2\\x=-2\sqrt{2}+2\end{matrix}\right.\)

9 tháng 12 2021

\(a,\Leftrightarrow9x^2=-36\Leftrightarrow x\in\varnothing\\ b,\Leftrightarrow3\left(x+4\right)-x\left(x+4\right)=0\\ \Leftrightarrow\left(3-x\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow2x^2-x-2x^2+3x+2=0\\ \Leftrightarrow2x=-2\Leftrightarrow x=-1\\ d,\Leftrightarrow\left(2x-3-2x\right)\left(2x-3+2x\right)=0\\ \Leftrightarrow-3\left(4x-3\right)=0\\ \Leftrightarrow x=\dfrac{3}{4}\\ e,\Leftrightarrow\dfrac{1}{3}x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ f,\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

3 tháng 12 2021

\(a,\Rightarrow5x+3x^2-3x^2-x+2=6\\ \Rightarrow4x=4\Rightarrow x=1\\ b,\Rightarrow\left(2x+\dfrac{1}{2}-1+2x\right)\left(2x+\dfrac{1}{2}+1-2x\right)=2\\ \Rightarrow\dfrac{3}{2}\left(4x-\dfrac{1}{2}\right)=2\\ \Rightarrow6x-\dfrac{3}{4}=2\\ \Rightarrow6x=\dfrac{11}{4}\\ \Rightarrow x=\dfrac{11}{24}\\ c,\Rightarrow\left(x+3\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)