Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x+1^3=2^5-\left(-1^3\right)\)
\(\Rightarrow x+1=33\)
=> x = 32
b) \(3^7-x=1^4-\left(-3^5\right)\)
\(\Rightarrow2187-x=1+243=244\)
=> x = 1943
a, ĐKXĐ:\(x\ge1\)
\(\sqrt{x-1}=3\\ \Rightarrow x-1=9\\ \Rightarrow x=10\)
\(b,x^2-64=0\\ \Rightarrow\left(x-8\right)\left(x+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\\ c,x^2+16=25\\ \Rightarrow x^2=9\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ d,ĐKXĐ:x\ge0\\ \left|\sqrt{x}-3\right|+3=9\\ \Rightarrow\left|\sqrt{x}-3\right|=6\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x}-3=-6\\x-3=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\sqrt{x}=-3\left(vô.lí\right)\\x=9\left(tm\right)\end{matrix}\right.\)
\(a,\Rightarrow2\left|x-1\right|=\dfrac{4}{3}\\ \Rightarrow\left|x-1\right|=\dfrac{2}{3}\\ \Rightarrow\left[{}\begin{matrix}x-1=\dfrac{2}{3}\\x-1=-\dfrac{2}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{1}{3}\end{matrix}\right.\\ b,\Rightarrow3:\left|x-\dfrac{1}{2}\right|=\dfrac{1}{6}\\ \Rightarrow\left|x-\dfrac{1}{2}\right|=18\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=18\\x-\dfrac{1}{2}=-18\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{37}{2}\\x=-\dfrac{35}{2}\end{matrix}\right.\)
a: Ta có: \(2\left|x-1\right|-\dfrac{1}{3}=\dfrac{5}{3}\)
\(\Leftrightarrow2\left|x-1\right|=2\)
\(\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
a) \(3^{x+1}=81\)
\(\Rightarrow3^{x+1}=3^4\)
\(\Rightarrow x+1=4\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
b) \(3^x+2^{x+1}=324\)
\(\Rightarrow3^x+3^x.3=324\)
\(\Rightarrow3^x.\left(1+3\right)=324\)
\(\Rightarrow3^x.4=324\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
a, Ta có \(3^{x+1}=81\Rightarrow3^{x+1}=3^4\)
\(\Rightarrow x+1=4\Rightarrow x=3\)
Vậy x= 3
b, Ta có \(3^x+3^{x+1}=324\Rightarrow3^x+3^x.3=324\)
\(\Rightarrow3^x.\left(1+3\right)=324\Rightarrow3^x.4=324\)
\(\Rightarrow3^x=81\Rightarrow3^x=3^4\Rightarrow x=4\)
Vậy x=4