Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x4+3x2+2
Ta có :
\(x^4\ge0\forall x\) và \(3x^2\ge0\forall x\Rightarrow x^4+3x^2\ge0\forall x\)
\(\Rightarrow A=x^4+3x^2+2\ge2\forall x\) . Có GTNN là 2 khi x = 0
Vậy AMin = 2 <=> x = 0
B = (x4+5)2
Ta có :
\(x^4\ge0\forall x\Leftrightarrow x^4+5\ge5\forall x\)
\(\Rightarrow B=\left(x^4+5\right)^2\ge5^2=25\forall x\) . Có GTNN là 25 khi tại x = 0
Vậy BMin = 25 <=> x = 0
C=(x-1)2+(y+2)2
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\) nên C = \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\) . Có GTNN là 0 tại \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy CMin = = <=> x=1 , y=-2
ta có x^2, x^4 \(\ge\)0. lũy thừa với số mũ chẵn là số không âm
A = x^4 + 3x^2+2 \(\ge\)0 + 3.0+2 =2. Vậy GTNN là 2 khi x = 0
B = (x^4 + 5)^2 \(\ge\)(0+5)^2=5^2=25. Vậy GTNN của B là 25 khi x=0
Ta có (x-1)^2\(\ge\)0 và (y+2)^2 \(\ge\)0
C= (x-1)^2 + (y+2)^2 \(\ge\)0 + 0 = 0.
Vậy GTNN của C là 0
khi x-1=0 hay x=1
và y+2=0 hay hay y=-2
a, 3 : ( 1 - 3/2x ) = 4 : ( 2 - x )
<=> \(\frac{3}{1-\frac{3}{2}x}=\frac{4}{2-x}\)
<=> 3 ( 2 - x ) = 4 ( 1 - 3/2x )
<=> 6 - 3x = 4 - 6x
<=> -3x + 6x = 4 - 6
<=> 3x = -2
<=> x = -2/3
b, 2.3x + 3x-1 = 7( 32 + 2.62 )
b, 2.3x + 3x-1 = 7( 32 + 2.62 )
<=> 2.3x + 3x-1 = 7.81
<=> 3x-1(2.3 + 1) = 7.81
<=> 3x-1.7 = 7.81
<=> 3x-1=81
<=> 3x-1 = 34
=> x - 1 = 4 => x = 5
Bài 1:
Ta có:
\(y-x=25\Rightarrow y=25+x\)
Mà \(7x=4y\Rightarrow7x=4\cdot\left(25+x\right)\)
\(7x=100+4x\)
\(\Rightarrow7x-4x=100\)
\(3x=100\)
\(x=\frac{100}{3}\)
ta có: f(x) + g(x) = ( 7 x^6 - 6x ^5 +5x^4 -4x^3 +3x^2 -2x +1) - ( x - 2x^2 +3x^3 - 4x^4 + 5x^5 - 6x^6)
\(=7x^6-6x^5+5x^4-4x^3+3x^2-2x+1-x+2x^2-3x^3+4x^4-5x^5+6x^6\)
\(=\left(7x^6+6x^6\right)-\left(6x^5+5x^5\right)+\left(5x^4+4x^4\right)-\left(4x^3+3x^3\right)+\left(3x^2+2x^2\right)-\left(2x+x\right)+1\)
\(=13x^6-11x^5+9x^4-7x^3+5x^2-3x+1\)
Chúc bn học tốt !!!!!!
Uhhhhhhhhhhhhhhhhhhhhhhhhhh😥😥😥😥😥😥😥😥😥😥😥????????????...............
a, Xét : x-4 = 0 => x= 4
2x+1 = 0 => x= \(\frac{1}{2}\)
x+3 = 0 => x = -3
x + 9 = 0 => x = -9
Khi đó ta có bảng xét dấu :
x | -9 | -3 | \(\frac{1}{2}\) | 4 |
x-4 | -13 | -7 | \(\frac{-7}{2}\) | 0 |
2x+1 | -17 | -5 | 2 | 9 |
x+3 | -6 | 0 | \(\frac{7}{2}\) | 7 |
x+9 | 0 | 6 | \(\frac{19}{2}\) | 13 |
=> có 5 trường hợp:
TH1 : \(x\le-9\)
TH2 : \(-9\le x< -3\)
TH3 : \(-3\le x< \frac{1}{2}\)
TH4 : \(\frac{1}{2}\le x< 4\)
Do đó :
TH1 : \(x\le-9\)
Ta có : /x-4/ = -(x-4) = 4 - x
/2x+1/ = -(2x+1) = -2x -1
/x+3/ = -(x + 3 ) = -x - 3
/x-9/ = -(x-9) = -x + 9 Thay vào đề bài ta có:
3.(4-x) + 2x-1 +5(-x - 3) -x-9 = 5
=> 12 - 3x + 2x - 1 + -5x - 15 - x - 9 = 5
=>(12 - 1 - 15 -9 ) +(-3x +2x -5x -x) = 5
=> -13 - 7x = 5
7x = -13 - 5
7x = -18
x = \(\frac{-18}{7}\)( Ko TM)
Tương tự với 4 trường hợp còn lại.
b) Để g(x) có nghiệm
\(\Leftrightarrow\left(x-1\right)\left(2-3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2-3x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{2}{3}\end{cases}}\)
Vậy \(x\in\left\{1;\frac{2}{3}\right\}\)là nghiệm của đa thức g(x)
c) Để k(x) có nghiệm
\(\Leftrightarrow x^2-3x-4=0\)
\(\Leftrightarrow x^2+x-4x-4=0\)
\(\Leftrightarrow x\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}}\)
Vậy \(x\in\left\{-1;4\right\}\)là nghiệm của đa thức