Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-1\right)^2-9x\left(x+1\right)\)
\(=9x^2-6x+1-9x^2-9x\)
=-15x+1
a)
Ta có
\(\left(x-1\right)^3-\left(x-1\right)^3-\left(6x-1\right)=-10\)
\(\Leftrightarrow-6x+1=-10\)
\(\Leftrightarrow-6x=-11\)
\(\Leftrightarrow x=\frac{11}{6}\)
Vậy \(x=\frac{11}{6}\)
a) ( x - 1 )3 - ( x - 1 )3 - ( 6x - 1 ) = -10
<=> -( 6x - 1 ) = -10
<=> -6x + 1 = -10
<=> -6x = -11
<=> x = 11/6
b) ( 2x - 1 )2 + ( 2x - 1 )( 2x - 3 ) - ( 2x + 3 )2 + ( 2x + 3 )( -3x ) - 24 = 4
<=> 4x2 - 4x + 1 + 4x2 - 8x + 3 - ( 4x2 + 12x + 9 ) - 6x2 - 9x - 24 = 4
<=> 4x2 - 4x + 1 + 4x2 - 8x + 3 - 4x2 - 12x - 9 - 6x2 - 9x - 24 = 4
<=> -2x2 - 33x - 29 - 4 = 0
<=> -2x2 - 33x - 33 = 0 ( muốn kết quả thì ib còn mình để là vô nghiệm vì nó có nghiệm vô tỉ )
=> Vô nghiệm
a) Đặt \(A=-x^2+9x-12\)
\(-A=x^2-9x+12\)
\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)
\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)
Mà \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)
Dấu "=" xảy ra khi : \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)
Vậy \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)
b) Đặt \(B=2x^2+10x-1\)
\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)
\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)
Mà \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge-\frac{29}{4}\)
Dấu "=" xảy ra khi : \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)
c) Đặt \(C=\left(2x+6\right)\left(x-1\right)\)
\(C=2x^2-2x+6x-6\)
\(C=2x^2+4x-6\)
\(C=2\left(x^2+2x+1\right)-8\)
\(C=2\left(x+1\right)^2-8\)
Mà \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow C\ge-8\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy \(C_{Min}=-8\Leftrightarrow x=-1\)
d) Đặt \(D=3x-2x^2\)
\(-2D=4x^2-6x\)
\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)
\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-2D\ge-\frac{9}{4}\)
\(\Leftrightarrow D\le\frac{9}{8}\)
Dấu "=" xảy ra khi : \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)
a) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(\Leftrightarrow\left(3x-2\right)\left[\left(3x\right)^2+3x\cdot2+2^2\right]-\left(3x-1\right)\left[\left(3x\right)^2+3x\cdot1+1\right]=x-4\)
\(\Leftrightarrow\left(3x\right)^3-2^3-\left[\left(3x\right)^3-1\right]=x-4\)
\(\Leftrightarrow x=-3\) ( thỏa mãn )
P/s : Đề câu b) viết lại nhé, mình không hiểu lắm :))
\(9\left(2x+1\right)=4\left(x-5\right)^2\)
\(\Leftrightarrow18x+9=4\left(x^2-10x+25\right)\)
\(\Leftrightarrow18x+9=4x^2-40x+100\)
\(\Leftrightarrow4x^2-58x+91=0\)
Ta có \(\Delta=58^2-4.4.91=1908,\sqrt{\Delta}=6\sqrt{53}\)
\(\Rightarrow x=\frac{58\pm6\sqrt{53}}{8}\)
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
\(9\left(2x+1\right)=4\left(x-5\right)2\)
\(18x+9=4x-40\)
\(18x-4x=-40-9\)
\(14x=-49\)
\(x=-\frac{7}{2}\)
(3x - 2)(9x2 + 6x + 4) - (3x - 1)(9x2 - 3x + 1) = x - 4
<=> 27x3 - 8 - 27x3 + 1 = x - 4
<=> x - 4 = -7
<=> x= -3
Vậy S = {-3}
9(2x + 1) = 4(x - 5)2
<=> 18x + 9 - 4x2 + 40x - 100 = 0
<=> -4x2 + 58x - 91 = 0
<=> -(4x2 - 58x + 210,25 - 119,25) = 0
<=> (2x - 14,5)2 = 119,25
<=> \(\orbr{\begin{cases}2x-14,5=\sqrt{119,25}\\2x-14,5=-\sqrt{119,25}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{29+3\sqrt{53}}{4}\\x=\frac{29-3\sqrt{53}}{4}\end{cases}}\)
Vậy S = {...}
\(\left(3x-1\right)^2-9^2=13\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=\sqrt{94}\\3x-1=-\sqrt{94}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{94}+1}{3}\\x=\dfrac{-\sqrt{94}+1}{3}\end{matrix}\right.\)