Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(\left(x-1\right)\left(x+2\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[x+2-\left(x-1\right)\right]=0\)
\(\Leftrightarrow3\left(x-1\right)=0\Leftrightarrow x=1\)
2, \(\left(x-2\right)^2-3\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x-2-3\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(-2x-5\right)=0\Leftrightarrow x=-\dfrac{5}{2};x=2\)
3, \(\left(5-2x\right)\left(2x+7\right)=4x^2-25=\left(2x-5\right)\left(2x+5\right)\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7+2x+5\right)=0\Leftrightarrow\left(4x+12\right)\left(5-2x\right)=0\Leftrightarrow x=-3;x=\dfrac{5}{2}\)
1) Ta có: \(\left(x-1\right)\left(x+2\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2-x+1\right)=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
2) Ta có: \(\left(x-2\right)^2-3\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2-3x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-5}{2}\end{matrix}\right.\)
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
\(\left(x+7\right)\left(3x-15\right)=0\\ \Rightarrow3\left(x-5\right)\left(x+7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=-7\end{matrix}\right.\\ 4x\left(x+7\right)=2\left(x+7\right)\\ \Rightarrow4x\left(x+7\right)-2\left(x+7\right)=0\\ \Rightarrow2\left(2x-1\right)\left(x+7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-7\end{matrix}\right.\\ \left(x-3\right)^2-x\left(x-4\right)=5\\ \Rightarrow x^2-6x+9-x^2+4x-5=0\\ \Rightarrow-2x+4=0\\ \Rightarrow-2x=-4\Rightarrow x=2\)
hưng phúc đầy đủ chưa bạn nhỉ?
1) \(\left(x+7\right)\left(3x-15\right)=0\)
⇔\(\left[{}\begin{matrix}x+7=0\\3x-15=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
2) \(4x\left(x+7\right)=2\left(x+7\right)\)
\(2\left(2x+1\right)\left(x+7\right)=0\)
⇔\(\left[{}\begin{matrix}2x+1=0\\x+7=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-7\end{matrix}\right.\)
Gọi a,b,c,... cho dễ nhé!
a,\(7+2x=22-3x\)
\(\Leftrightarrow2x+3x=22-7\)
\(\Leftrightarrow5x=15\)
\(\Leftrightarrow x=3\)
Vậy...
b,\(x-12+4x=25+2x-1\)
\(\Leftrightarrow x+4x-2x=25-1+12\)
\(\Leftrightarrow3x=36\)
\(\Leftrightarrow x=12\)
Vậy...
c,\(7-\left(2x+4\right)=-\left(x+4\right)\)
\(\Leftrightarrow7-2x-4=-x-4\)
\(\Leftrightarrow-2x+x=-4+4-7\)
\(\Leftrightarrow-x=-7\)
\(\Leftrightarrow x=7\)
Vậy...
d,\(8x-3=5x+12\)
\(\Leftrightarrow8x-5x=12+3\)
\(\Leftrightarrow3x=15\)
\(\Leftrightarrow x=5\)
Vậy...
e,\(x+2x+3x-19=3x+5\)
\(\Leftrightarrow x+2x+3x-3x=5+19\)
\(\Leftrightarrow3x=24\)
\(\Leftrightarrow x=8\)
Vậy...
f,\(\left(x-1\right)-\left(2x-1\right)=9-x\)
\(\Leftrightarrow x-1-2x+1=9-x\)
\(\Leftrightarrow x-2x+x=9-1+1\)
\(\Leftrightarrow0x=9\) (Vô lý)
Vậy...
a, \(7+2x=22-3x\)
\(\Rightarrow7+2x-22+3x=0\)
\(\Rightarrow5x-15=0\)
\(\Rightarrow5x=15\Rightarrow x=3\)
b, \(x-12+4x=25+2x-1\)
\(\Rightarrow3x-12-24-2x=0\)
\(\Rightarrow x-36=0\Rightarrow x=36\)
c, \(7-\left(2x+4\right)=-\left(x+4\right)\)
\(\Rightarrow7-2x-4=-x-4\)
\(\Rightarrow3-2x+x+4=0\)
\(\Rightarrow-x=-7\Rightarrow x=7\)
d, \(8x-3=5x+12\)
\(\Rightarrow8x-3-5x-12=0\)
\(\Rightarrow3x-15=0\)
\(\Rightarrow3x=15\Rightarrow x=5\)
e, \(x+2x+3x-19=3x+5\)
\(\Rightarrow6x-19-3x-5=0\)
\(\Rightarrow3x-24=0\)
\(\Rightarrow3x=24\Rightarrow x=8\)
f, \(\left(x-1\right)-\left(2x-1\right)=9-x\)
\(\Rightarrow x-1-2x+1-9+x=0\)
(hình như câu này bị sai đề rồi, bạn xem lại đề nhé)
Chúc bạn học tốt!
1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)
ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)
<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)
<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)
<=> \(\frac{3x+10}{x^2+2x-3}=0\)
<=> \(3x+10=0\)
<=> \(x=-\frac{10}{3}\)
1) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\Leftrightarrow\left(2x-5\right).-2=0\)
\(\Leftrightarrow-4x+10=0\)
\(\Leftrightarrow-4x=-10\)
\(\Leftrightarrow x=\frac{5}{2}.\)
Vậy \(S=\left\{\frac{5}{2}\right\}\)
2)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right).\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\)
\(\Leftrightarrow x+3=0\)hoặc \(x=0\)hoặc \(x-2=0\)
\(\Leftrightarrow x=-3\)hoặc \(x=0\)hoặc \(x=2\)
Vậy \(S=\left\{-3;0;2\right\}\)
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
\(2x\left(x-7\right)+7-x=0\Leftrightarrow2x\left(x-7\right)-\left(x-7\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-7\right)=0\Leftrightarrow x=\frac{1}{2};7\)