Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 5x(x-2000)-x+2000=0
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\\ \Rightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-2000=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0+2000\\5x=0+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\5x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow x^3-2x^2+4x^2-8x-5x+10=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+4x-5\right)=0\)
=>(x-2)(x+5)(x-1)=0
hay \(x\in\left\{2;-5;1\right\}\)
\(x^3+2x^2-13x+10=0\)
\(\left(x^3-x^2\right)+\left(3x^2-3x\right)-\left(10x-10\right)=0\)
\(x^2\left(x-1\right)+3x\left(x-1\right)-10\left(x-1\right)=0\)
\(\left(x-1\right)\left(x^2+3x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+3x=10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+\dfrac{3}{2}\right)^2=\dfrac{49}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-5\end{matrix}\right.\)
\(a,\Rightarrow\left(x-2000\right)\left(5x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\\ b,\Rightarrow x\left(x^2-13\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{matrix}\right.\\ c,\Rightarrow3x\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ d,\Rightarrow\left(x-5\right)\left(x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\\ e,\Rightarrow\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
a) \(5x\left(x-2000\right)-x+2000=0\)
\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-2000\right)=0\)
\(\Leftrightarrow x\in\left\{\frac{1}{5};2000\right\}\)
a) 5x(x - 2000) - x + 2000 = 0
=> 5x(x - 2000) - (x - 2000) = 0
=> (x - 2000).(5x - 1) = 0
=> x - 2000 = 0 hoặc 5x - 1 = 0
=> x = 2000 hoặc 5x = 1
=> x = 2000 hoặc x = 1/5
b) x3 - 13x = 0
=> x.(x2 - 13) = 0
=> x = 0 hoặc x2 - 13 = 0
=> x = 0 hoặc x2 = 13, vô lí
=> x = 0
a) 5x(x-2000)-(x-2000)=(5x-1)(x-2000)=0 nên x=1/5 hoặc x=2000
b)\(x^3-13x=x\left(x^2-13\right)=0\)\(\Rightarrow\)x=0 hoặc x^2=13 hay x=\(\sqrt{13}\)
a: \(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
a)\(6x^2+5x-6=0\)
\(\Leftrightarrow6x^2-4x+9x-6=0\)
\(\Leftrightarrow2x\left(3x-2\right)+3\left(3x-2\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)
b)\(6x^2-13x+6=0\)
\(\Leftrightarrow6x^2-4x-9x+6=0\)
\(\Leftrightarrow2x\left(3x-2\right)-3\left(3x-2\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=\frac{2}{3}\end{array}\right.\)
c)\(10x^2-13x-3=0\)
\(\Leftrightarrow10x^2-15x+2x-3=0\)
\(\Leftrightarrow5x\left(2x-3\right)+\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-3=0\\5x+1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{1}{5}\end{array}\right.\)
d)\(20x^2+19x-3=0\)
\(\Delta=19^2-\left(-4\left(20.3\right)\right)=601\)
\(\Rightarrow x_{1,2}=\frac{-19\pm\sqrt{601}}{40}\)
e)\(3x^2-x+6=0\)
\(\Delta=\left(-1\right)^2-4\left(3.6\right)=-71< 0\)
Suy ra vô nghiệm
x3 = 13x
⇔ x3 – 13x = 0
⇔ x.x2 – x.13 = 0
(Có nhân tử chung x)
⇔ x(x2 – 13) = 0
⇔ x = 0 hoặc x2 – 13 = 0
+ x2 – 13 = 0 ⇔ x2 = 13 ⇔ x = √13 hoặc x = –√13
Vậy có ba giá trị của x thỏa mãn là x = 0, x = √13 và x = –√13.