Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> x + 2y = 0 hoặc x2 - 2xy + 4y2 = 0
còn lại thì e bó tay . canh
(x+2y)(x2-2xy+4y2)=0
<=>x3+(2y)3=0
<=>x3+8y3=0 (1)
(x-2y)(x2+2xy+4y2)=0
<=>x3-(2y)3=0
<=>x3-8y3=0 (2)
từ (1) và (2)=>x3+8y3-x3+8y3=0
<=>16y3=0
<=>y=0
thay y=0 vào (1) ta đc:
x3-0=0
<=>x3=0
<=>x=0
Ta có: \(\left(x-1\right)^2-\left(x-2\right)\left(x+2\right)=5\)
\(\Leftrightarrow x^2-2x+1-x^2+4=5\)
\(\Leftrightarrow-2x=0\)
hay x=0
\(A=\left(7x-1\right)^2-4\left|1-7x\right|+5\)
\(\Rightarrow MinA=5\)khi và chỉ khi x=1/7
Bài 1:
a. $=2x(x-3)$
b. $=x^3(x+3)+(x+3)=(x^3+1)(x+3)=(x+1)(x^2-x+1)(x+3)$
c. $=64-(x^2-2xy+y^2)=8^2-(x-y)^2$
$=(8-x+y)(8+x-y)$
Bài 2:
$(x+5)(x+1)+(x-2)(x^2+2x+4)-x(x^2+x-2)$
$=x^2+6x+5+(x^3-2^3)-(x^3+x^2-2x)$
$=x^2+6x+5+x^3-8-x^3-x^2+2x$
$=8x-3$
Ta có đpcm.
\(x^3-7x^2-13x+91=0\)
\(\Rightarrow x^2\left(x-7\right)-13\left(x-7\right)=0\)
\(\Rightarrow\left(x-7\right)\left(x^2-13\right)=0\)
\(\Rightarrow\left(x-7\right)\left(x-\sqrt{13}\right)\left(x+\sqrt{13}\right)=0\)
Tìm được \(x\in\left\{7;\sqrt{13};-\sqrt{13}\right\}\)