Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x-2005|+|x-2006|+|y-2007|+|x-2008|=3
Ta có: X= x nếu x>0
-x nếu x<0
Y= y nếu y>0
-y nếu y<0
* X>0, Y>0
=> |x-2005|= x-2005
|x-2006|=x-2006
|x-2008|=x-2008
|y-2007|=y-2007
=> x-2005+x-2006+y-2007+x-2008
tới đây tự suy ra nhé
1) \(\frac{x+4}{2005}\)\(+\)\(\frac{x+3}{2006}\)= \(\frac{x+2}{2007}\)\(+\)\(\frac{x+1}{2008}\)
\(\Leftrightarrow\) \(\frac{x+4}{2005}\)\(+\)1 \(+\)\(\frac{x+3}{2006}\)\(+\)1 = \(\frac{x+2}{2007}\)\(+\)1 \(+\)\(\frac{x+1}{2008}\)\(+\)1
\(\Leftrightarrow\)\(\frac{x+2009}{2005}\)+ \(\frac{x +2009}{2006}\)= \(\frac{x+2009}{2007}\)+\(\frac{x+2009}{2008}\)
\(\Leftrightarrow\)(x + 2009)(1/2005 + 1/2006) = (x + 2009)(1/2007 + 1/2008)
\(\Leftrightarrow\)(x + 2009)(1/2005 + 1/2006 - 1/2007 - 1/2008) = 0
Ta thấy: 1/2005 + 1/2006 - 1/2007 - 1/2008 \(\ne\)0
\(\Leftrightarrow\)x + 2009 = 0
\(\Leftrightarrow\)x = -2009
tìm x,y là giải phương trình
thì phải có hai vế bằng nhau
cho vậy Ngô Bảo Châu cũng làm hông được
cũng ko phải khó gì . Cậu áp dụng cái này nhé :
\(\left|\right|\)|a|+|b| lớn hơn hoặc bằng |a+b|
và |a-b|= |b-a|
|x-2005|+|x-2008|>=3 và |y-2007|>=0=> y=007 và x=2006 là nghiệm duy nhất
\(A=x^{2005}-2005x^{2004}-x^{2004}+2005x^{2003}+x^{2003}-2005x^{2002}-.....+x^3-2005x^2-x^2+2005x+x-2005+2004\)\(=\left(x-2005\right)x^{2004}-\left(x-2005\right)x^{2003}+\left(x-2005\right)x^{2002}-....+\left(x-2005\right)x^2-\left(x-2005\right)x+\left(x-2005\right)+2004\)\(=\left(x-2005\right)\left(x^{2004}-x^{2003}+x^{2002}-......+x^2-x+1\right)+2004\)
Với x = 2005 => x - 2005 =0
=> A =2004
\(\text{Ta có: }A=x^{2005}-2006x^{2004}+2006x^{2003}-2006x^{2002}+...-2006x^2+2006x-1.\)\(=x^{2005}-\left(2005+1\right)x^{2004}+\left(2005+1\right)x^{2003}-\left(2005+1\right)x^{2002}+...-\left(2005+1\right)x^2+\left(2005+1\right)x-1\) \(\text{Mà x=2005 nên: }A=x^{2005}-x^{2005}-x^{2004}+x^{2004}+x^{2003}-x^{2003}-x^{2002}+...-x^3-x^2+x^2+x-1\)
\(=x-1=2005-1=2004\)