K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

Ta có

( x   –   6 ) ( x   +   6 )   –   ( x   +   3 ) 2   =   9     ⇔   x 2   –   36   –   ( x 2   +   6 x   +   9 )   =   9     ⇔   x 2   –   36   –   x 2   –   6 x   –   9   –   9   =   0

 

ó - 6x – 54 = 0 ó 6x = -54 ó x = -9

Vậy x = -9

Đáp án cần chọn là: A

a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow2x=-7\)

hay \(x=-\dfrac{7}{2}\)

b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)

\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)

\(\Leftrightarrow24x=-13\)

hay \(x=-\dfrac{13}{24}\)

2 tháng 11 2018

\(x^2-3x+2.\left(x-3\right)=0\)

\(x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\left(x-3\right).\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

\(x.\left(x-3\right)-3x+9=0\)

\(x.\left(x-3\right)-3.\left(x-3\right)=0\)

\(\left(x-3\right)^2=0=>x=3\)

2 tháng 11 2018

a,\(x^2-3x+2\left(x-3\right)=0.\)

\(\Leftrightarrow x^2-3x+2x-6=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

6 tháng 8 2018

\(a,\left(3x+x\right)\left(x^2-9\right)-\left(x-3\right)\left(x^2+3x+9\right)\)

\(=4x\left(x^2-9\right)-x^3+27\)

\(=4x^3-36x-x^3+27\)

\(=3x^3-36x+27\)

6 tháng 8 2018

\(\left(x+6\right)^2-2x.\left(x+6\right)+\left(x-6\right).\left(x+6\right)\)

\(=\left(x+6\right).\left(x+6-2x+x-6\right)\)

\(=\left(x+6\right).0\)

\(=0\)

23 tháng 12 2016

a ) \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)

\(\Leftrightarrow x^2-4x+4-x^2+9=6\)

\(\Leftrightarrow-4x+13=6\)

\(\Leftrightarrow-4x=-7\)

\(\Leftrightarrow x=\frac{7}{4}\)

Vậy \(x=1\).

b ) \(4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)

\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)

\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)

\(\Leftrightarrow-24x+37=10\)

\(\Leftrightarrow-24x=27\)

\(\Leftrightarrow x=\frac{9}{8}.\)

Mấy pài kia tương tự . :D

 

23 tháng 12 2016

cậu khai triển các tích ra là ra thui mà cậu

27 tháng 11 2018

a)\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6.\)

\(\Leftrightarrow x^2-4x+4-x^2+9-6=0\)

\(\Leftrightarrow-4x+7=0\)

\(\Leftrightarrow4x=7\Leftrightarrow x=1,75\)

27 tháng 11 2018

\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10.\)

\(\Leftrightarrow4\left(x^2-6x+9\right)-4x^2+1-10=0\)

\(\Leftrightarrow-24x+27=0\)

\(\Leftrightarrow24x=27\Leftrightarrow x=1,125\)

11 tháng 12 2017

a, (x-2)^2 - (x-3)(x+3)=6

x^2-4x+4-(x^2-9)=6

x^2-4x+4-x^2+9=6

(x^2-x^2)-4x+13=6

-4x=-7

x=1,75

b, 4(x-3)^2 - (2x-1)(2x+1)=10

4(x^2-6x+9)-(4x^2-1)=10

4x^2-24x+36-4x^2+1=10

-24x+37=10

x=9/8

c,(x-4)^2 - (x+2)(x-2)=6

x^2-8x+16-(x^2-4)=6

x^2-8x+16-x^2+4=6

-8x+20=6

x=7/4

d, 9(x+1)^2 - (3x-2)(3x+2)=10

9(x^2+2x+1)-(9x^2-4)=10

9x^2+18x+9-9x^2+4=10

18x+13=10

x=-1/6

1 tháng 7 2018

\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)

\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)

\(-4x+13=6\)

\(-4x=6-13\)

\(-4x=-7\)

\(x=\frac{-7}{-4}\)

\(x=\frac{7}{4}\)

Vậy \(x=\frac{7}{4}\)

\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)

\(4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)

\(4x^2-24x+36-4x^2+1=10\)

\(-24x+37=10\)

\(x=\frac{9}{8}\)

Vậy \(x=\frac{9}{8}\)

\(c,\left(x-4\right)^2-\left(x+2\right)\left(x-2\right)=6\)

\(x^2-8x+16-\left(x^2-4\right)=6\)

\(x^2-8x+16-x^2+4=6\)

\(-8x+20=6\)

\(x=\frac{7}{4}\)

Vậy \(x=\frac{7}{4}\)

\(d,9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)

\(9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)

\(9x^2+18x+9-9x^2+4=10\)

\(18x+13=10\)

\(x=\frac{-1}{6}\)

Vậy \(x=\frac{-1}{6}\)

Câu 6: D

Câu 7: A

Câu 6: Giá trị của biểu thức (x- 8) x (x + 3) - (x - 2) x (x + 5) tại x=-3là:

A.-4  B.16  C. -10    D. 10 

Câu 7:Giá trị của biểu thức 6 + (x- 3) x (x3 + 2) - x8 - 2xtại x= -1/3 là:

A. -1/9  B. 1/9  C.9    D.-9

24 tháng 6 2017

a)\(2x\left(x+1\right)-3-2x=5\)

\(\Leftrightarrow2x^2+2x-3-2x=5\)

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4=\left(-2\right)^2=2^2\)

              \(\Rightarrow x=2;-2\)

b)\(2x\left(3x+1\right)+\left(4-2x\right)=7\)

\(\Leftrightarrow6x^2+2x+4-2x=7\)

\(\Leftrightarrow6x^2+4=7\)

\(\Leftrightarrow6x^2=3\)

\(\Leftrightarrow x^2=\frac{1}{2}=-\sqrt{\frac{1}{2}}=\sqrt{\frac{1}{2}}\)

c)\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x-1\right)^2=6\)

\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6\left(x^2-2x+1\right)=6\)

\(\Leftrightarrow-3x^2+27x+6x^2-12x+6=6\)

\(\Leftrightarrow-3x^2+27x+6x^2-12x+6=6\)

\(\Leftrightarrow3x^2+15x=0\)

\(\Leftrightarrow3x\left(x+5\right)=0\)

         \(\Rightarrow\orbr{\begin{cases}3x=0\\x+5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

5 tháng 10 2021

a) \(\left(3x-5\right)\left(5-3x\right)+9\left(x+1\right)^2=30\)

\(\Rightarrow15x-9x^2-25+15x+9\left(x^2+2x+1\right)-30=0\)

\(\Rightarrow30x-9x^2-25+9x^2+18x+9-30=0\)

\(\Rightarrow48x-46=0\)

\(\Rightarrow x=\frac{23}{24}\)

b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)

\(\Rightarrow\left(x^2+8x+16\right)-\left(x^2-1\right)=16\)

\(\Rightarrow x^2+8x+16-x^2+1=16\)

\(\Rightarrow8x+17=16\)

\(\Rightarrow8x=-1\)

\(\Rightarrow x=\frac{-1}{8}\)

5 tháng 10 2021

c) \(\left(y-2\right)^3-\left(y-3\right)\left(y^2+3y+9\right)+6\left(y+1\right)^2=49\)

\(\Rightarrow\left(y-2\right)^3-\left(y^3-3^3\right)+6\left(y^2+2y+1\right)=49\)

\(\Rightarrow y^3-6y^2+12y-8-y^3+27+6y^2+12y+6=49\)

\(\Rightarrow\left(y^3-y^3\right)+\left(-6y^2+6y^2\right)+\left(12y+12y\right)+\left(-8+27+6\right)=49\)

\(\Rightarrow24y+25=49\)

\(\Rightarrow24y=24\)

\(\Rightarrow y=1\)

d) \(\left(y+3\right)^3-\left(y+1\right)^3=56\)

\(\Rightarrow\left(y+3-y-1\right)[\left(y+3\right)^2+\left(y+3\right)\left(y+1\right)+\left(y+1\right)^2]=56\)

\(\Rightarrow2\left(y^2+6y+9+y^2+4y+3+y^2+2y+1\right)=56\)

\(\Rightarrow3y^2+12y+13=28\)

\(\Rightarrow\left(3y^2+15y\right)-\left(3y+15\right)=0\)

\(\Rightarrow3y\left(y+5\right)-3\left(y+5\right)=0\)

\(\Rightarrow3\left(y-1\right)\left(y+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)