Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(\left|x\right|,\left|x^2+x\right|\ge0\forall x\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x^2+x=0\end{matrix}\right.\)
\(\Rightarrow x=0\)
Tìm nghiệm của đa thức sau:
G(x)=x3-5x+3
Ta có: 3x-5x+3=0
3x-5x =0-3
3x-5x =-3
-2x =-3
x = \(\frac{-3}{-2}\)
x = \(\frac{3}{2}\)
\(\frac{1}{2}+\frac{1}{4}x=\frac{3}{2}\)
\(\frac{1}{4}x=\frac{3}{2}-\frac{1}{2}\)
\(\frac{1}{4}x=1\)
\(x=1:\frac{1}{4}\)
\(x=4\)
\(\frac{1}{2}\)+\(\frac{1}{4}\)x = \(\frac{3}{2}\)
=> \(\frac{1}{4}\)x = \(\frac{3}{2}\)- \(\frac{1}{2}\)
=> \(\frac{1}{4}\)x = 1
=> x = 1 : \(\frac{1}{4}\)
=> x = 4
Vậy x = 4
\(\frac{2}{5}-\frac{1}{2}\left(x+\frac{1}{3}\right)=\frac{7}{5}\)
\(\frac{1}{2}\left(x+\frac{1}{3}\right)=\frac{2}{5}-\frac{7}{5}\)
\(\frac{1}{2}\left(x+\frac{1}{3}\right)=-1\)
\(x+\frac{1}{3}=-1:\frac{1}{2}\)
\(x+\frac{1}{3}=-2\)
\(x=-2-\frac{1}{3}\)
\(x=-\frac{7}{3}\)
\(\frac{2}{5}-\frac{1}{2}.\left(x+\frac{1}{3}\right)=\frac{7}{5}\)
\(\Rightarrow\frac{1}{2}.\left(x+\frac{1}{3}\right)=\frac{2}{5}-\frac{7}{5}\)
\(\Rightarrow\frac{1}{2}.\left(x+\frac{1}{3}\right)=-1\)
\(\Rightarrow x+\frac{1}{3}=-2\)
\(\Rightarrow x=-\frac{7}{3}\)
|x+5/3 | -1/2=3/4
|x-5/3| = 3/4 +1/2
|x-5/3|=3/4 + 2/4
|x-5/3|=5/4
=> x- 5/3=5/4 hay x-5/3=-5/4
x= 5/4+5/3 x=-5/4+5/3
=> x=35/12 x=5/12
ĐIỀU KIỆN : \(x\ge0\)
\(\Rightarrow\hept{\begin{cases}x-2=x\\x-2=-x\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}0=2\left(vl\right)\\2x=2\end{cases}\Rightarrow x=1\left(tm\right)}\)
Vậy \(x=1\)