K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(x^2-6x+15=a,2x=b\)

\(PT\Leftrightarrow\left(a-2b\right)\left(a-3b\right)=2ab\)

\(\Leftrightarrow a^2-7ab+6b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-6b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=6b\end{cases}}\)

Đến đây đơn giản rồi nhé :))))

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

13 tháng 12 2022

a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)

=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75

=>x=7; y=5

b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)

=>4x+9y=8 và -8x+3y=5

=>x=-1/4; y=1

c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)

=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5

=>2x-3y=-5,5 và 3x-2y=-4,5

=>x=-1/2; y=3/2

e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)

=>\(x=\sqrt{2};y=\sqrt{3}\)

23 tháng 11 2022

a: =>(x^2+4x-5)(x^2+4x-21)=297

=>(x^2+4x)^2-26(x^2+4x)+105-297=0

=>x^2+4x=32 hoặc x^2+4x=-6(loại)

=>x^2+4x-32=0

=>(x+8)(x-4)=0

=>x=4 hoặc x=-8

b: =>(x^2-x-3)(x^2+x-4)=0

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)

c: =>(x-1)(x+2)(x^2-6x-2)=0

hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)

22 tháng 5 2020

\(a,3x^3+6x^2-4x=0\)

\(\Leftrightarrow x\left(3x^2+6x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x^2+6x-4=0\left(1\right)\end{cases}}\)

\(\Delta_{\left(1\right)}=36+4\cdot3\cdot4=84>0\)

\(\text{\Rightarrow pt có 2 nghiệm phân biệt}\)

\(x_1=\frac{-3+\sqrt{21}}{3};x_2=\frac{-3-\sqrt{21}}{3}\)

\(\text{Vậy phương trình đã cho bằng 0 khi x=0 hoặc x= }\frac{-3\pm\sqrt{21}}{3}\)

2 tháng 1 2021

Áp dụng bất đẳng thức AM - GM:

\(\sqrt{\left(x^2-15\right)\left(x-3\right)}\le\dfrac{x^2-15+x-3}{2}=\dfrac{x^2+x-18}{2};\sqrt{x^2-15}\le\dfrac{x^2-15+1}{2}=\dfrac{x^2-14}{2};\sqrt{x-3}\le\dfrac{x-3+1}{2}=\dfrac{x-2}{2}\).

Do đó \(F\ge x^2+x-\dfrac{x^2+x-18}{2}-\dfrac{x^2-14}{2}-\dfrac{x-2}{2}-38=-21\).

Đẳng thức xảy ra khi x = 4.

Vậy...

1 tháng 2 2023

\(\left(x^2-6x+9\right)+15\left(x^2-6x+10\right)=1\)

\(\Leftrightarrow\left(x-3\right)^2+15\left[\left(x-3\right)^2+1\right]=1\)

\(\Leftrightarrow16\left(x-3\right)^2+15=1\)

\(\Leftrightarrow16\left(x-3\right)^2=-14\)

=> Phương trình vô nghiệm 

1 tháng 2 2023

\(\left(x^2-6x+9\right)-15\left(x^2-6x+10\right)=1\)

Đặt : \(x^2-6x+9=\left(x-3\right)^2=t\) thay vào pt ta được :

\(t^2-15\left(t+1\right)=1\)

\(\Leftrightarrow t^2-15t-16=0\)

\(\Leftrightarrow\left(t+1\right)\left(t-16\right)=0\)

\(\Leftrightarrow t=\left\{{}\begin{matrix}16\\-1\end{matrix}\right.\)

với : \(t=-1\) thì \(\left(x-3\right)^2=-1\)

\(\Rightarrow ptvonghiem\)

Với : \(t=16\) thì \(\left(x-3\right)^2=16\)

\(\Leftrightarrow x\in\left\{{}\begin{matrix}7\\-1\end{matrix}\right.\)

\(vay...\)