K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

(|x|-2011)(n+2008)(n+2009)=-(23-32)2009=-(-1)2009=1=1(n+2008)(n+2009)

=>|x|-2011=1

|x|=1+2011

|x|=2012

=>x=2012 hoặc x=-2012

8 tháng 12 2018

\(\hept{\begin{cases}\left|x+\frac{1}{2009}\right|\ge0\\....\\\left|x+\frac{2008}{2009}\right|\ge0\end{cases}\Rightarrow\left|x+\frac{1}{2009}\right|+\left|x+\frac{2}{2009}\right|+....\left|x+\frac{2008}{2009}\right|\ge0}\)

\(\Rightarrow2009x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2009}\right|=x+\frac{1}{2009}\\....\\\left|x+\frac{2008}{2009}\right|=x+\frac{2008}{2009}\end{cases}\Rightarrow x+\frac{1}{2009}+...+x+\frac{2008}{2009}}=2009x\)

\(2008x+201840=2009x\Rightarrow x=201840\)

p/s: cách làm thì khá ok, nhưng kq không chắc lắm nhé, có gì bn tính lại nha

8 tháng 12 2018

Boul đẹp trai_tán gái đổ 100% sai 100%

Sao dòng cuối lại tek ? Các phân số ấy cộng vào không thể là 201840

Về hướng làm thì đúng nhưng chỉ đúng đến bước phá trị thôi 

Tham khảo cách làm nhưg nhớ đổi đoạn cuối nhé !

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

a: =>|x-2009|=2009-x

=>x-2009<=0

=>x<=2009

b: =>2x-1=0 và y-2/5=0 và x+y-z=0

=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=5/10+4/10=9/10

2 tháng 12 2019

Nhanh lên nhé mình xin các bạn đấy

18 tháng 12 2022

A=|x-2008|+|2009-x|+|y-2010|+|x-2011|+2011

≥|x-2008+2009-x|+|y-2010|+|x-2011|+2011

= |y-2010|+|x-2011|+2012≥2012

Dấu = xảy ra khi : {y−2010=0x−2011=0{y−2010=0x−2011=0

<=> {y=2010x=2011{y=2010x=2011

Vay GTNN cua A=2012 khi {x=2011;y=2010

1 tháng 12 2019

Các bạn và giáo viện giúp ạ

21 tháng 3 2020

cậu nhờ giáo viên giúp đi

11 tháng 7 2016

a)  \(\Leftrightarrow\frac{x+7}{2003}+1+\frac{x+4}{2006}+1-\frac{x-1}{2011}-1-\frac{x-5}{2015}-1=0\)

     \(\Leftrightarrow\frac{x+2010}{2003}+\frac{x+2010}{2006}-\frac{x+2010}{2011}-\frac{x+2010}{2015}=0\)

     \(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2003}+\frac{1}{2006}-\frac{1}{2011}-\frac{1}{2015}\right)=0\)

     \(\Leftrightarrow x+2010=0\) ( vì 1/2003  +  1/2006  --  1/2011  -- 1/2015   \(\ne\)0)

    \(\Leftrightarrow x=-2010\)

câu b làm tương tự (có gì không hiểu hỏi mk nha) >v<

21 tháng 2 2018

A=/x-2008/+/2009-x/+/y-2010/+/x-2011/+2011

≥/x-2008+2009-x/+/y-2010/+/x-2011/+2011

= /y-2010/+/x-2011/+2012≥2012

Dau bang xay ra khi : \(\left\{{}\begin{matrix}y-2010=0\\x-2011=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}y=2010\\x=2011\end{matrix}\right.\)

Vay GTNN cua A=2012 khi \(\left\{{}\begin{matrix}x=2011\\y=2010\end{matrix}\right.\)