Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+\frac{3}{5}\right|-\left|x-\frac{7}{3}\right|=0\)
\(\left|x+\frac{3}{5}\right|=\left|x-\frac{7}{3}\right|\)
\(\Rightarrow x+\frac{3}{5}=x-\frac{7}{3}\)(loại) hoặc \(x+\frac{3}{5}=-x+\frac{7}{3}\)
\(\Rightarrow2x=\frac{7}{3}+\frac{3}{5}\)
\(2x=\frac{44}{15}\)
\(x=\frac{22}{15}\)
a) Vì \(\hept{\begin{cases}\left|x\right|\ge0\\\left|x+2\right|\ge0\end{cases}}\)mà \(\left|x\right|+\left|x+2\right|=0\)nên \(\hept{\begin{cases}\left|x\right|=0\\\left|x+2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=-2\end{cases}}\)(vô lý)
Vế trái |x.(x-4)| \(\ge\) 0 nên vế phải x \(\ge\) 0.
Do đó |x.(x-4)| = x.(x-4) = x
=> x - 4 = x : x
=> x - 4 = 1
=> x = 5
\(\left|x+\frac{4}{15}\right|-\left|-3,75\right|=-\left|-2,15\right|\)
=> \(\left|x+\frac{4}{15}\right|-3,75=-2,15\)
=> \(\left|x+\frac{4}{15}\right|=\frac{8}{5}\)
+) \(x+\frac{4}{15}=\frac{8}{5}\)
=> \(x=\frac{8}{5}-\frac{4}{15}=\frac{24}{15}-\frac{4}{15}=\frac{20}{15}=\frac{4}{3}\)
+) \(x+\frac{4}{15}=-\frac{8}{5}\)
=> \(x=-\frac{8}{5}-\frac{4}{15}\)
=> \(x=-\frac{24}{15}-\frac{4}{15}=-\frac{28}{15}\)
\(|x+\frac{4}{15}|-|-3,75|=-|-2,15|\)
\(|x+\frac{4}{15}|-3,75=-2,15\)
\(|x+\frac{4}{15}|=-2,15+3,75\)
\(|x+\frac{4}{15}|=1,6\)
Ta có : \(|x+\frac{4}{15}|\ge0\forall x\)
\(\Rightarrow|x+\frac{4}{15}|=x+\frac{4}{15}\)
\(\Rightarrow x+\frac{4}{15}=1,6\)
\(x+\frac{4}{15}=\frac{8}{5}\)
\(x=\frac{8}{5}-\frac{4}{15}\)
\(x=\frac{4}{3}\)
\(\Leftrightarrow\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x4\right|=\frac{2\left|5x-2\right|+5\left|2x+5\right|}{10}\)
\(\Rightarrow\frac{2\left|5x-2\right|+5\left|2x+5\right|}{10}=0\)
=>x\(\in\){rỗng} x ko tồn tại với nghiệm số thực
a) |x + 1| > 0
|x + 1| + 5 > 5
\(\Rightarrow\) min A = 5 khi x = - 1
b) \(B=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
x2 > 0
x2 + 3 > 3
\(\frac{1}{x^2+3}\le\frac{1}{3}\)
\(\frac{12}{x^2+3}\le4\)
\(1+\frac{12}{x^2+3}\le5\)
\(\Rightarrow\) max B = 5 khi x = 0
Ta có \(\hept{\begin{cases}\left|x-1,5\right|\ge0\forall x\\\left|2x-3\right|\ge0\forall x\end{cases}}\Rightarrow\left|x-1,5\right|+\left|2x-3\right|-7\ge-7\forall x\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1,5=0\\2x-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1,5\\x=1,5\end{cases}}\Rightarrow x=1,5}\)
Vậy GTNN của A là - 7 khi x = 1,5
\(\left|x+\frac{3}{5}\right|=\left|x-\frac{7}{3}\right|\Rightarrow x+\frac{3}{5}=\left|x-\frac{7}{3}\right|\)
th1 : | x-7/3| =x-7/3 khi x>=7/3
x+3/5=x-7/3
0x=-44/15 ( vô lý)
=> pt vô nghiệm
th2 |x-7/3|=7/3-x khi x<=7/3
x+3/5=7/3-x
2x=26/15
x=13/15 ( tmđk)
x=13/15 là nghiệm của pt