Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
<=> \(\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)-\left(\frac{x-3}{2007}-1\right)-\left(\frac{x-4}{2006}-1\right)=0\)
<=> \(\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
<=> \(\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
<=> x - 2010 = 0 Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)
<=> x = 2010
\(VP=\frac{1}{2\left(a+3\right)}+\frac{1}{2\left(a+5\right)}=\frac{2\left(a+5\right)}{2\left(a+3\right)\left(a+5\right)}+\frac{2\left(a+3\right)}{2\left(a+3\right)\left(a+5\right)}\)
\(=\frac{2\left(a+5\right)}{4\left(a+3\right)\left(a+5\right)}+\frac{2\left(a+3\right)}{4\left(a+3\right)\left(a+5\right)}=\frac{2\left(a+5\right)+2\left(a+3\right)}{4\left(a+3\right)\left(a+5\right)}=\frac{2\left[\left(a+3\right)+\left(a+5\right)\right]}{4\left(a+3\right)\left(a+5\right)}=\frac{\left(a+3\right)+\left(a+5\right)}{2\left(a+3\right)\left(a+5\right)}\)
\(=\frac{\left(a+a\right)+\left(3+5\right)}{2\left(a+3\right)\left(a+5\right)}=\frac{2a+8}{2\left(a+3\right)\left(a+5\right)}=\frac{2\left(a+4\right)}{2\left(a+3\right)\left(a+5\right)}=\frac{a+4}{\left(a+3\right)\left(a+5\right)}\)
\(VT=\frac{x-2}{\left(a+3\right)\left(a-5\right)}\)
\(\Rightarrow\frac{x-2}{\left(a+3\right)\left(a-5\right)}=\frac{a+4}{\left(a+3\right)\left(a+5\right)}\)
\(\Rightarrow\frac{x-2}{a+4}=\frac{\left(a+3\right)\left(a-5\right)}{\left(a+3\right)\left(a+5\right)}\Rightarrow\frac{x-2}{a+4}=\frac{a-5}{a+5}\Rightarrow\left(x-2\right)\left(a+5\right)=\left(a-5\right)\left(a+4\right)\)
chịu