Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.....
<=>\(\frac{2}{5.8}+\frac{2}{8.11}+\frac{2}{11.14}+...+\frac{2}{x\left(x+3\right)}=\frac{202}{1540}\)
<=>\(\frac{2}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{202}{1540}\)
<=>\(\frac{2}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{202}{1540}\)
<=>\(\frac{2}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{202}{1540}\)
<=>\(\frac{1}{5}-\frac{1}{x+3}=\frac{202}{1540}:\frac{2}{3}=\frac{303}{1540}\)
<=>\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
<=> x+3=308
<=> x=305
Giải:
a)1/5.8+1/8.11+...+1/x.(x+1)=101/1540
1/3.(3/5.8+3/8.11+...+3/x.(x+1))=101/1540
1/3.(1/5-1/8+1/8-1/11+...+1/x-1/x+1)=101/1540
1/3.(1/5-1/x+1)=101/1540
1/5-1/x+1=101/1540:1/3
1/5-1/x+1=303/1540
1/x+1=1/5-303/1540
1/x+1=1/308
⇒x+1=308
x=308-1
x=307
b)1/1.2+1/2.3+1/3.4+...+1/x.(x+1)=2020/2021
1/1-1/2+1/2-1/3+1/3-1/4+...+1/x-1/x+1=2020/2021
1/1-1/x+1=2020/2021
1/x+1=1/1-2020/2021
1/x+1=1/2021
⇒x+1=2021
x=2021-1
x=2020
Mk thấy đề bài hơi sai là:
1/x+(x+1) ➜ 1/x.(x+1)
mới ra đc kết quả!
cảm ơn bn đã cố gắng
à bn đã tham gia khóa học của mình chưa
\(\frac{2}{40}+\frac{2}{88}+\frac{2}{154}+..+\frac{2}{x\left(x+3\right)}=\frac{202}{1540}\)
\(\Leftrightarrow\frac{2}{5.8}+\frac{2}{8.11}+\frac{2}{11.14}+...+\frac{2}{x\left(x+3\right)}=\frac{202}{1540}\)
\(\Leftrightarrow\frac{2}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{202}{1540}\)
\(\Leftrightarrow\frac{2}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{202}{1540}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{202}{1540}:\frac{2}{3}=\frac{303}{1540}\)
\(\Leftrightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
\(\Rightarrow x+3=308\Rightarrow x=305\)
Vạy x = 305
a/ \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^{10}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+.......+\dfrac{1}{2^9}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+......+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{10}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{10}}\)
b/ \(\dfrac{1}{5.8}+\dfrac{1}{8.11}+.......+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow3\left(\dfrac{1}{5.8}+\dfrac{1}{8.11}+......+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{101}{1540}.3\)
\(\Leftrightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+......+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+.....+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)
\(\Leftrightarrow x+3=308\)
\(\Leftrightarrow x=305\)
Vậy ..
c/ \(1+\dfrac{1}{3}+\dfrac{1}{6}+........+\dfrac{1}{x\left(x+1\right):2}=1\dfrac{2007}{2009}\)
\(\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{6}+.......+\dfrac{1}{x\left(x+1\right):2}\right)=\dfrac{4016}{2009}.\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+......+\dfrac{1}{x\left(x+1\right)}=\dfrac{2008}{2009}\)
\(\Leftrightarrow\dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{x\left(x+1\right)}=\dfrac{2008}{2009}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2009}\)
\(\Leftrightarrow x+1=2009\)
\(\Leftrightarrow x=2008\)
Vậy ..
bài 1:
A=\(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)
ta thấy 2A=\(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^9}\)
=>2A-A=\(1-\dfrac{1}{2^{10}}=\dfrac{1023}{1024}\)
a) \(\left(x-\dfrac{1}{2}\right)\left(-3-\dfrac{x}{2}\right)=0\)
Th1 : \(x-\dfrac{1}{2}=0\)
\(x=0+\dfrac{1}{2}\)
\(x=\dfrac{1}{2}\)
Th2 : \(-3-\dfrac{x}{2}=0\)
\(\dfrac{x}{2}=-3\)
\(x=\left(-3\right)\cdot2\)
\(x=-6\)
Vậy \(x\) = \(\left(\dfrac{1}{2};-6\right)\)
b) \(x-\dfrac{1}{8}=\dfrac{5}{8}\)
\(x=\dfrac{5}{8}+\dfrac{1}{8}\)
\(x=\dfrac{3}{4}\)
c) \(-\dfrac{1}{2}-\left(\dfrac{3}{2}+x\right)=-2\)
\(\dfrac{3}{2}+x=-\dfrac{1}{2}-\left(-2\right)\)
\(\dfrac{3}{2}+x=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}-\dfrac{3}{2}\)
\(x=0\)
d) \(x+\dfrac{1}{3}=\dfrac{-12}{5}\cdot\dfrac{10}{6}\)
\(x+\dfrac{1}{3}=-4\)
\(x=-4-\dfrac{1}{3}\)
\(x=-\dfrac{13}{3}\)
a)
<=> (1/3)[3/(5.8) + 3/(8.11) + ... + 3/[x(x+3)] = 101/1540
<=> (1/3)[(1/5 - 1/8) + (1/8 - 1/11) + ... + 1/x - 1/(x+3)] = 101/1540
<=> (1/3)[1/5 - 1/(x+3)] = 101/1540
<=> 1/5 - 1/(x+3) = 303/1540
<=> 1/(x+3) = 1/5 - 303/1540 = 5/1540 = 1/308
<=> x = 305
b)
a)\(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)
\(\dfrac{1.3}{5.8}+\dfrac{1.3}{8.11}+\dfrac{1.3}{11.14}+...+\dfrac{1.3}{x.\left(x+3\right)}=\dfrac{101.3}{1540}\)
\(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{5}-\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{308}\)
308.1 = (x + 3).1
308 = x + 3
x = 308 - 3
x = 305
a: =>1/2x=7/2-2/3=21/6-4/6=17/6
=>x=17/3
b: =>2/3:x=-7-1/3=-22/3
=>x=2/3:(-22/3)=-1/11
c: =>1/3x+2/5x-2/5=0
=>11/15x=2/5
hay x=6/11
d: =>2x-3=0 hoặc 6-2x=0
=>x=3/2 hoặc x=3
sửa đề: phải là 14 chứ sao lại là 13 nhỉ?=))
\(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\) \(\left(x\ne0;x\ne-3\right)\)
\(\left(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{x\left(x+3\right)}\right)\cdot3=\dfrac{101}{1540}\cdot3\)
\(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{308\left(x+3\right)}{1540\left(x+3\right)}-\dfrac{1540}{1540\left(x+3\right)}=\dfrac{303\left(x+3\right)}{1540\left(x+3\right)}\)
suyy ra
`308x+924-1540=303x+909`
`5x=1525`
`x=305(tm)`
\(\dfrac{2}{40}+\dfrac{2}{88}+...+\dfrac{2}{x\left(x+3\right)}=\dfrac{202}{1540}\)
\(\Leftrightarrow2\left(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\right)=\dfrac{202}{1540}\)
\(\Leftrightarrow\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)
\(\Leftrightarrow x+3=308\Leftrightarrow x=305\)