Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\Rightarrow\dfrac{x}{2}-\dfrac{3x}{5}-\dfrac{13}{5}=-\dfrac{7}{5}-\dfrac{7x}{10}\\ \Rightarrow\dfrac{1}{2}x-\dfrac{3}{5}x+\dfrac{7}{10}x=\dfrac{6}{5}\\ \Rightarrow\dfrac{3}{5}x=\dfrac{6}{5}\Rightarrow x=2\\ c,\Rightarrow\dfrac{2x-3}{3}-\dfrac{5-3x}{6}=-\dfrac{1}{3}+\dfrac{3}{2}=\dfrac{7}{6}\\ \Rightarrow\dfrac{4x-6-5+3x}{6}=\dfrac{7}{6}\\ \Rightarrow7x-11=7\Rightarrow x=\dfrac{18}{7}\\ d,\Rightarrow\dfrac{2}{3x}+\dfrac{7}{x}=\dfrac{4}{5}+2+\dfrac{3}{12}=\dfrac{61}{20}\\ \Rightarrow\dfrac{23}{3x}=\dfrac{61}{20}\\ \Rightarrow183x=460\\ \Rightarrow x=\dfrac{460}{183}\\ e,\Rightarrow2\left(x-1\right)-\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left(2-x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
e: Ta có: \(\left(x-1\right)^2=2\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Bài 1:
a.
$|x+\frac{7}{4}|=\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} x+\frac{7}{4}=\frac{1}{2}\\ x+\frac{7}{4}=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-5}{4}\\ x=\frac{-9}{4}\end{matrix}\right.\)
b. $|2x+1|-\frac{2}{5}=\frac{1}{3}$
$|2x+1|=\frac{1}{3}+\frac{2}{5}$
$|2x+1|=\frac{11}{15}$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=\frac{11}{15}\\ 2x+1=\frac{-11}{15}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-2}{15}\\ x=\frac{-13}{15}\end{matrix}\right.\)
c.
$3x(x+\frac{2}{3})=0$
\(\Leftrightarrow \left[\begin{matrix} 3x=0\\ x+\frac{2}{3}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=\frac{-3}{2}\end{matrix}\right.\)
d.
$x+\frac{1}{3}=\frac{2}{5}-(\frac{-1}{3})=\frac{2}{5}+\frac{1}{3}$
$\Leftrightarrow x=\frac{2}{5}$
Nguyễn Quý Trung:
\(x+\dfrac{1}{3}=\dfrac{2}{5}+\dfrac{1}{3}\)
Bạn bớt 2 vế đi 1/3 thì \(x=\dfrac{2}{5}\)
1.Tính
a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)
b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)
c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)
d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)
e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)
Bài 2
a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)
\(x=\dfrac{13}{49}\)
b.\(\left|x-1,5\right|=2\)
Xảy ra 2 trường hợp
TH1
\(x-1,5=2\)
\(x=3,5\)
TH2
\(x-1,5=-2\)
\(x=-0,5\)
Vậy \(x=3,5\) hoặc \(x=-0,5\) .
Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
a: =>4x-6-9=5-3x-3
=>4x-15=-3x+2
=>7x=17
hay x=17/7
b: \(\Leftrightarrow\dfrac{2}{3x}-\dfrac{1}{4}=\dfrac{4}{5}-\dfrac{7}{x}+2\)
=>2/3x+21/3x=4/5+2+1/4=61/20
=>23/3x=61/20
=>3x=23:61/20=460/61
hay x=460/183
Câu 1:
b: \(\Leftrightarrow\left|x-1\right|=-3x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{1}{3}\\\left(-3x+1-x+1\right)\left(-3x+1+x-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{1}{3}\\\left(-4x+2\right)\cdot\left(-2x\right)=0\end{matrix}\right.\Leftrightarrow x=0\)
c: \(\Leftrightarrow\left[{}\begin{matrix}2x-1=2x+3\\2x+3=1-2x\end{matrix}\right.\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\)
d: \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
e: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\\left[x\left(x^2-\dfrac{5}{4}\right)-x\right]\left[x\left(x^2-\dfrac{5}{4}\right)+x\right]=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x\left(x^2-\dfrac{9}{4}\right)\cdot x\cdot\left(x^2-\dfrac{1}{4}\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;\dfrac{1}{2};\dfrac{3}{2}\right\}\)