Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0
=> 6x2 - 21x - (6x2 + x - 90x - 15) - 2010 = 0
=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0
=> 68x - 1995 = 0
?
b) 2x(x - 2012) - x + 2012 = 0
=> 2x(x - 2012) - (x - 2012) = 0
=> (x - 2012) (2x - 1) = 0
⇔[
x−2012=0 |
2x−1=0 |
⇔[
x=2012 |
2x=1 |
⇔[
x=2012 |
x=12 |
Vậy x = {2012;12 }
Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0
=> 6x2 - 21x - (6x2 + x - 90x - 15) - 2010 = 0
=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0
=> 68x - 1995 = 0
?
b) 2x(x - 2012) - x + 2012 = 0
=> 2x(x - 2012) - (x - 2012) = 0
=> (x - 2012) (2x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-2012=0\\2x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2012\\2x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2012\\x=\frac{1}{2}\end{cases}}\)
Vậy x = \(\left\{2012;\frac{1}{2}\right\}\)
I don't now
sorry
...................
nha
b) \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow\)\(\left(3x-2\right)\left(3x+3\right)^2\left(3x+8\right)+144=0\)
Đặt: \(3x+3=a\)pt trở thành:
\(\left(a-5\right)a^2\left(a+5\right)+144=0\)
\(\Leftrightarrow\)\(a^4-25a^2+144=0\)
\(\Leftrightarrow\)\(\left(a-4\right)\left(a-3\right)\left(a+3\right)\left(a+4\right)=0\)
đến đây bạn tìm a rồi tính x
c) \(\left(4x-5\right)\left(2x-3\right)\left(x-1\right)=9\)
\(\Leftrightarrow\)\(\left(4x-5\right)\left(4x-6\right)\left(4x-4\right)-72=0\)
Đặt \(4x-5=a\)pt trở thành:
\(a\left(a-1\right)\left(a+1\right)-72=0\)
\(\Leftrightarrow\)\(a^3-a-72=0\)
p/s: ktra lại đề
d) \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\)
\(\Leftrightarrow\)\(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)=0\)
\(\Leftrightarrow\)\(\left[\left(2x^2+x-2013\right)-2\left(x^2-5x-2012\right)\right]^2=0\)
\(\Leftrightarrow\)\(\left(11x+2011\right)^2=0\)
đến đây làm nốt
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
\(A.x^2-16x=0\)
\(x^2-\left(4x\right)^2=0\)
\(\left(x-4x\right)\left(x+4x\right)=0\)
\(\left(-3x\right)\left(5x\right)=0\)
\(\Rightarrow\) \(-3x=0\) hoặc \(5x=0\)
\(x=\dfrac{0}{-3}\) hoặc \(x=\dfrac{0}{5}\)
Vậy \(x=0\) hoặc \(x=0.\)
B. 4x2 - 4x + 1 = 0
(2x)2 - (2x)2 + 12 = 0
(2x - 2x + 1 ) (2x + 2x +1) = 0
1 (4x + 1) =0
=> 1 (4x + 1) =0
4x + 1 = 0
4x = 0-1
Vậy x = \(\dfrac{-1}{4}.\)
C. (3x-1)2 - (2x+3)2 = 0
(3x -1 -2x +3) (3x -1 +2x +3) = 0
(x + 2)(5x + 2) = 0
=> x + 2 =0 hoặc 5x + 2 =0
x = 0 - 2 hoặc 5x = 0 - 2
Vậy x = -2 hoặc x = \(\dfrac{-2}{5}.\)
Còn về câu d thì mình hơi phân vân, tại mình dốt toán lắm
a/ \(x^2-16x=0\)
\(\Leftrightarrow x\left(x-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-16=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Vậy...
b/ \(4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy..
c/ \(\left(3x-1\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(3x-1-2x-3\right)\left(3x-1+2x+3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\5x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{5}\end{matrix}\right.\)
Vậy...
d/ \(2013x^2-2014x+1=0\)
\(\Leftrightarrow2013x^2-x-2013x+1=0\)
\(\Leftrightarrow x\left(2013x-1\right)-\left(2013x-1\right)=0\)
\(\Leftrightarrow\left(2013x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2013x-1=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2013}\\x=1\end{matrix}\right.\)
Vậy..
nốt ý b:
\(\left(x-1\right)^3+1+3x\left(x-4\right)=0\)
\(\Leftrightarrow x^3-3x^2+3x-1+1+3x^2-12x=0\)
\(\Leftrightarrow x^3-9x=0\Leftrightarrow x\left(x^2-9\right)=0\)
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ..............
\(a,x\left(x-2012\right)-2013x+2012.2013=0\)
\(=x\left(x-2012\right)+2013\left(-x+2012\right)=0\)
\(\Rightarrow x\left(x-2012\right)-2013\left(x-2012\right)=0\)
\(\Rightarrow\left(x-2013\right)\left(x-2012\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2013=0\\x-2012=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2013\\x=2012\end{matrix}\right.\)
Vậy...