Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(-5\left(x^2-3x+1\right)+x\left(1+5x\right)=x-2\)
\(\Rightarrow-5x^2+15x-5+x+5x^2=x-2\)
\(\Rightarrow16x-5=x-2\)
\(\Rightarrow16x-x=5-2\)
\(\Rightarrow15x=3\)
\(\Rightarrow x=\dfrac{15}{3}=5\)
b) \(12x^2-4x\left(3x+5\right)=10x-17\)
\(\Rightarrow12x^2-12x^2-20x=10x-17\)
\(\Rightarrow-20x=10x-17\)
\(\Rightarrow-20x-10x=-17\)
\(\Rightarrow-30x=-17\)
\(\Rightarrow x=\dfrac{-30}{-17}=\dfrac{30}{17}\)
c) \(-4x\left(x-5\right)+7x\left(x-4\right)-3x^2=12\)
\(\Rightarrow-4x^2+20x+7x^2-28x-3x^2=12\)
\(\Rightarrow-8x=12\)
\(\Rightarrow x=\dfrac{12}{-8}=-\dfrac{4}{3}\)
Bài 2:
a) \(\left(x+5\right)\left(x-7\right)-7x\left(x-3\right)\)
\(=x^2-7x+5x-35-7x^2+21x\)
\(=-6x^2+19x-35\)
b) \(x\left(x^2-x-2\right)-\left(x-5\right)\left(x+1\right)\)
\(=x^3-x^2-2x-x^2+x-5x-5\)
\(=x^3-2x^2-6x-5\)
c) \(\left(x-5\right)\left(x-7\right)-\left(x+4\right)\left(x-3\right)\)
\(=x^2-7x-5x+35-x^2-3x+4x-12\)
\(=11x+23\)
d) \(\left(x-1\right)\left(x-2\right)-\left(x+5\right)\left(x+2\right)\)
\(=x^2-2x-x+2-x^2+2x+5x+10\)
\(=4x+12\)
a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
\(\Rightarrow\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=-4x+1\end{cases}}\Rightarrow\orbr{\begin{cases}4x-\frac{3}{2}x-1=\frac{1}{2}\\-4x-\frac{3}{2}x+1=\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{5}{2}x=\frac{3}{2}\\-\frac{11}{2}x=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
phần b ở đề bài mình ghi sai, là bằng 0 chứ ko phải bằng 10
Bạn nên viết lại đề bài cho sáng sủa, rõ ràng để người đọc dễ hiểu hơn.
f: =>4(x^2+4x-5)-x^2-7x-10=3(x^2+x-2)
=>4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0
=>6x-24=0
=>x=4
e: =>8x+16-5x^2-10x+4(x^2-x-2)=4-x^2
=>-5x^2-2x+16+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
a) \(\frac{x}{x+1}=\frac{x+5}{x+7}\)
\(=>x\left(x+7\right)=\left(x+1\right).\left(x+5\right)\)
\(=>x^2+7x=x^2+6x+5\)
\(=>x^2+7x-x^2-6x-5=0\)
\(=>x-5=0\)
\(=>x=5\)
vay \(x=5\)
b) \(\frac{x+7}{x+4}=\frac{x-1}{x-2}\)
\(=>\left(x+7\right)\left(x-2\right)=\left(x+4\right)\left(x-1\right)\)
\(=>x^2+5x-14=x^2+3x-4\)
\(=>x^2+5x-14-x^2-3x+4=0\)
\(=>2x-10=0\)
\(=>2\left(x-5\right)=0\)
\(=>x-5=0\)
\(=>x=5\)
vay \(x=5\)
c) \(\frac{x+2}{x-2}=\frac{x-3}{x+3}\)
\(=>\left(x+2\right)\left(x+3\right)=\left(x-2\right)\left(x-3\right)\)
\(=>x^2+5x+6=x^2-7x+6\)
\(=>x^2+5x+6-x^2+7x-6=0\)
\(=>12x=0\)
\(=>x=0\)
vay \(x=0\)
Bài 2:
a) Ta có: \(\left|x-2\right|=\left|4-x\right|\)
\(\Leftrightarrow x-2=4-x\)
\(\Leftrightarrow2x=6\)
hay x=3
b) Ta có: \(\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)+\left(-5\right)=6\)
\(\Leftrightarrow\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)=11\)
\(\Leftrightarrow\left|2x-1\right|-3=\dfrac{-11}{2}\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{-11}{2}+\dfrac{6}{2}=\dfrac{-5}{2}\)(Vô lý)
a: Ta có: \(\dfrac{x+2}{5}=\dfrac{1}{x-2}\)
\(\Leftrightarrow x^2-4=5\)
\(\Leftrightarrow x^2=9\)
hay \(x\in\left\{3;-3\right\}\)
b: Ta có: \(\dfrac{x}{x+1}=\dfrac{x+5}{x+7}\)
\(\Leftrightarrow x^2+6x+5=x^2+7x\)
\(\Leftrightarrow6x-7x=-5\)
hay x=5
c: Ta có: \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Leftrightarrow x^2+2x-3=x^2-4\)
\(\Leftrightarrow2x=-1\)
hay \(x=-\dfrac{1}{2}\)