Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3
\(a,\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)-28=0\)
\(\Leftrightarrow\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-28=0\)
\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+6\right)-28=0\)
\(\Leftrightarrow\left(x^2+5x\right)^2-36-28=0\)
\(\Leftrightarrow\left(x^2+5x\right)^2-64=0\)
\(\Leftrightarrow\left(x^2+5x-8\right)\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-\sqrt{57}}{2}-\frac{5}{2}\\x=\frac{\sqrt{57}}{2}-\frac{5}{2}\end{matrix}\right.\)
b, \(\left(x^2+4x+3\right)\left(x^2+6x+8\right)=0\)
\(\Leftrightarrow\left(x^2+3x+x+3\right)\left(x^2+4x+2x+8\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)\left(x+4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\\x=-2\\x=-4\end{matrix}\right.\)
\(\left(a-1\right)\left(a+2\right)\left(a+3\right)\left(a+6\right)-28=\left(a-1\right)\left(a+6\right)\left(a+2\right)\left(a+3\right)-28=\left(a^2+5a-6\right)\left(a^2+5a+6\right)-28=\left(a^2+5a\right)^2-36-28=\left(a^2+5a\right)^2=64\Leftrightarrow a^2+5a=\pm8;a^2+5a+6,25=\left(a+2,5\right)^2\ge0\Rightarrow a^2+5a\ge-6,25\Rightarrow a^2+5a=8\Leftrightarrow\left(a+2,5\right)^2=14,25\Leftrightarrow a=\pm\sqrt{14,25}-2,5\)