K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

B = .................

Xét thừa số 63.1,2 - 21.3,6 = 0 nên B = 0

\(C=\left|\dfrac{4}{9}-\left(\dfrac{\sqrt{2}}{2}\right)^2\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{\dfrac{2}{3}-\dfrac{4}{5}-\dfrac{6}{7}}\right|\)

\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}}{2\left(\dfrac{1}{3}-\dfrac{2}{5}-\dfrac{3}{7}\right)}\right|\)

\(C=\left|\dfrac{4}{9}-\dfrac{1}{2}\right|+\left|0,4+\dfrac{1}{2}\right|=\dfrac{1}{18}+\dfrac{9}{10}=\dfrac{43}{45}\)

6 tháng 12 2017

Mình làm câu 1,2 trước, câu 3 sau

Câu 1:

\(\sqrt{x^2}=0\)

=> \(\left(\sqrt{x^2}\right)^2=0^2\)

\(\Leftrightarrow x^2=0\Leftrightarrow x=0\)

Câu 2:

\(A=\left(0,75-0,6+\dfrac{3}{7}+\dfrac{3}{12}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+2,75-2,2\right)\)

\(A=\left(\dfrac{3}{4}-\dfrac{3}{5}+\dfrac{3}{7}+\dfrac{3}{13}\right)\left(\dfrac{11}{7}+\dfrac{11}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)

\(A=3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)\cdot11\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{11}{4}-\dfrac{11}{5}\right)\)

\(A=33\cdot\dfrac{491}{1820}\cdot\dfrac{221}{420}=\dfrac{3580863}{764400}\)

10 tháng 7 2017

Ta có : \(\left|x+\frac{13}{14}\right|=-\left|x-\frac{3}{7}\right|\)

\(\Rightarrow\left|x+\frac{13}{14}\right|+\left|x-\frac{3}{7}\right|=0\)

Mà : \(\left|x+\frac{13}{14}\right|\ge0\forall x\)

      \(\left|x-\frac{3}{7}\right|\ge0\forall x\)

Nên : \(\orbr{\begin{cases}\left|x+\frac{13}{14}\right|=0\\\left|x-\frac{3}{7}\right|=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{13}{14}=0\\x-\frac{3}{7}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{14}\\x=\frac{3}{7}\end{cases}}\)

4 tháng 7 2018

a) \(\left|3x+1\right|=2-\left|-\dfrac{4}{5}\right|\)

\(\left|3x+1\right|=2-\dfrac{4}{5}\)

\(\left|3x+1\right|=\dfrac{6}{5}\)

TH1: \(3x+1=-\dfrac{6}{5}\)

\(3x=-\dfrac{6}{5}-1\)

\(3x=\dfrac{-11}{5}\)

\(x=\dfrac{-11}{5}\div3\)

\(x=\dfrac{-11}{15}\)

TH2: \(3x+1=\dfrac{6}{5}\)

\(3x=\dfrac{6}{5}-1\)

\(3x=\dfrac{1}{5}\)

\(x=\dfrac{1}{5}\div3\)

\(x=\dfrac{1}{15}\)

Câu b tương tự.

17 tháng 7 2018

a)(x − 12)2 = 0

=>x − 12 = 0

=> x = 12

b) (x+12)2 = 0,25

=> x + 12 = 0,5 hoặc x + 12= -0,5

=> x = -11,5 hoặc x = -12,5

c) (2x−3)3 = -8

=> 2x - 3 = -2

=> x = 0,5

d) (3x−2)5 = −243

=> 3x - 2 = -3

=> x = -1/3

e) (7x+2)-1 = 3-2

=> \(\dfrac{1}{7x+2}=\dfrac{1}{9}\)

=> 7x + 2 = 9

=> x = 1

f) (x−1)3 = −125

=> (x−1) = −5

=> x = -4

g) (2x−1)4 = 81

=> 2x - 1 = 3

=> x = 2

h) (2x−1)6 = (2x−1)8

=> 2x -1 = 0 hoặc 2x - 1 = 1 hoặc 2x - 1 = -1

=> x = 1/2 hoặc x = 1 hoặc x = 0

17 tháng 7 2018

a/ \(\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy ...

b/ \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{2}\right)^2\\\left(x+\dfrac{1}{2}\right)^2=\left(-\dfrac{1}{2}\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{2}\\x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy ..

c/ \(\left(2x-3\right)^3=-8\)

\(\Leftrightarrow\left(2x-3\right)^3=\left(-2\right)^3\)

\(\Leftrightarrow2x-3=-2\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy ...

d/ \(\left(3x-2\right)^5=-243\)

\(\left(3x-2\right)^5=\left(-3\right)^5\)

\(\Leftrightarrow3x-2=-3\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

Vậy ...

e/ \(\left(x-1\right)^3=-125\)

\(\Leftrightarrow\left(x-1\right)^3=\left(-5\right)^3\)

\(\Leftrightarrow x-1=-5\)

\(\Leftrightarrow x=-4\)

Vậy..

f/ \(\left(2x-1\right)^4=81\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^4=3^4\\\left(2x-1\right)^4=\left(-3\right)^4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy...

g/ \(\left(2x-1\right)^6=\left(2x-1\right)^8\)

\(\Leftrightarrow\left(2x-1\right)^8-\left(2x-1\right)^6=0\)

\(\Leftrightarrow\left(2x-1\right)^6\left[\left(2x-1\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^6=0\\\left(2x-1\right)^2-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\\left[{}\begin{matrix}2x-1=1\\2x-1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\end{matrix}\right.\)

Vậy..

24 tháng 7 2018

a. \(\dfrac{1}{3}.\left(x-1\right)+\dfrac{2}{5}.\left(x+1\right)=0\)

=> \(\dfrac{1}{3}x-\dfrac{1}{3}+\dfrac{2}{5}x+\dfrac{2}{5}=0\)

=> \(\dfrac{1}{3}x+\dfrac{2}{5}x=0+\dfrac{1}{3}-\dfrac{2}{5}\)

=> \(\dfrac{11}{15}x=\dfrac{-1}{15}\)

=> \(x=\dfrac{-1}{11}\)

24 tháng 7 2018

Đây toán 8 mà? :v

a,\(\dfrac{1}{5}x\left(x-1\right)+\dfrac{2}{5}x\left(x+1\right)=0\)

\(\Leftrightarrow5x\left(x-1\right)+6x\left(x+1\right)=0\)

\(\Leftrightarrow\left[5\left(x-1\right)+6x\left(x+1\right)\right]x=0\)

\(\Leftrightarrow\left(5x-5+6x+6\right)x=0\)

\(\Leftrightarrow\left(11+1\right)x=0\)

\(\Leftrightarrow11x+1=0;x=0\)

\(\Leftrightarrow x=-\dfrac{1}{11};x=0\)

Vậy....

7 tháng 7 2018

đây

Lũy thừa của một số hữu tỉ

7 tháng 7 2018

đây

21 tháng 1 2018

a) Tính chất dãy tỉ số bằng nhau: \(\dfrac{x+y}{2014}=\dfrac{x-y}{2016}=\dfrac{x+y+x-y}{2014+2016}=\dfrac{2x}{4030}=\dfrac{x}{2015}\)

\(\dfrac{x+y}{2014}=\dfrac{x-y}{2016}=\dfrac{x+y-x+y}{2014-2016}=\dfrac{2y}{-2}=\dfrac{y}{-1}\)

Nên: \(\dfrac{x}{2015}=\dfrac{y}{-1}=\dfrac{xy}{2015}\)

Xét: \(\left\{{}\begin{matrix}\dfrac{x}{2015}=\dfrac{xy}{2015}\Leftrightarrow2015x=2015xy\Leftrightarrow y=1\\\dfrac{y}{-1}=\dfrac{xy}{2015}\Leftrightarrow2015y=-1xy\Leftrightarrow2015=-1x\Leftrightarrow x=-2015\end{matrix}\right.\)

2) \(VT=\left|x-6\right|+\left|x-10\right|+\left|x-2022\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(VT=\left|x-6\right|+\left|2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(VT\ge\left|x-6+2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(VT\ge2016+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\ge2016=VP\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}6\le x\le2022\\x=10\\y=2014\\z=2015\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=2014\\z=2015\end{matrix}\right.\)

25 tháng 9 2021

a) \(A=3\left|2x-\dfrac{3}{2}\right|+2021^0=3\left|2x-\dfrac{3}{2}\right|+1\ge1\)

\(minA=1\Leftrightarrow2x=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{4}\)

b) \(B=2\left|x-6\right|+3\left(2y-1\right)^2+2021^0=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\)

\(minB=1\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)

25 tháng 9 2021

\(A=3\left|2x-\dfrac{3}{2}\right|+1\ge1\\ A_{min}=1\Leftrightarrow2x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{4}\\ B=2\left|x-6\right|+3\left(2y-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=\dfrac{1}{2}\end{matrix}\right.\)