Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,x^2+3x=0
=> x.(x+3)=0
=> +)x=0
+) x+3=0 => x=-3
b,x^3-4x=0
=> x.(x^2-2^2)=0
=> x.(x-2).(x+2)=0
=> +) x=0
+) x-2=0 => x=2
+) x+2=0 => x= -2
a) \(x^2+3x=0\)
\(x\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
vay \(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
b) \(x^3-4x=0\)
\(x\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vay \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Hoàng Trung Kiên bạn ko biết làm thì thôi cố làm gì !!!! :)
\(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
\(\Leftrightarrow48x^2-12x-20x+5+3x-48x^2-7+112x=81\)
\(\Leftrightarrow48x^2-48x^2-12x-20x+3x+112=81-7+5\)
\(\Leftrightarrow83x=83\)
\(\Leftrightarrow x=1\)
Vậy................ ( P/s Mình làm rất kỹ rồi nhé )
Hoàng Trung Kiên sai ngay từ dòng 2 không biết cách nhân đa thức với đa thức à
1/x(x-y)-4x+4y
=x(x-y)-4(x-y)
=(x-y)(x-4)
2/a)x^2-x=0
x(x-1)=0
<=>x=0 hoặc x-1=0
x =1
=>S={0;1}
b)(x+2)(x-3)-x-2=0
(x+2)(x-3)-(x+2)=0
(x+2)(x-3-1)=0
(x+2)(x-4)=0
<=>x+2=0 hoặc x-4=0
x =-2 x =4
=>{-2;4}
c)36^2-49=0
(6x-7)(6x+7)=0
<=>6x-7=0 hoặc 6x+7=0
6x =7 6x =-7
x =7/6 x =-7/6
=>{7/6;-7/6}
3/(n+7)^2-(n-5)^2
=(n+7-n+5)(n+7+n-5)
=12(2n+2)
=12*2(n+1)
=24(n+1) chia hết cho 24
=>(n+7)^2-(n-5)^2 chia hết cho 24.
a) \(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(=\left(\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{x^2-4}-\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right)\)
\(=\left(\frac{2x+4}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{x^2-4}-\frac{x+2}{x^2-4}\right)\)
\(=\frac{2x}{\left(x+2\right)^2}:\frac{-x}{x^2-4}=\frac{2x}{\left(x+2\right)^2}.\frac{\left(x+2\right)\left(x-2\right)}{-x}\)
\(=\frac{-2\left(x-2\right)}{\left(x+2\right)}=\frac{-2x+4}{x+2}\)
b) \(x^2-3x=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
+) x = 0 \(\Rightarrow A=\frac{-2.0+4}{0+2}=\frac{4}{2}=2\)
+) x = 3 \(\Rightarrow A=\frac{-2.3+4}{3+2}=\frac{-2}{5}\)
(1 - 3x)2 - (x - 2)(9x + 1) = (3x - 4)(3x + 4) - 9(x + 3)2
⇌ 1 - 6x + 9x2 - 9x2 - x + 18x + 2 = 9x2 - 16 - 9x2 - 54x - 81 ⇌ 65x = -100 ⇌ x = \(-\frac{20}{13}\)\(\left(1-3x\right)^2-\left(x-2\right)\left(9x+1\right)=\left(3x-4\right)\left(3x+4\right)-9\left(x+3\right)^2\)
\(\Rightarrow1-6x+9x^2-9x^2+18x-x-2=9x^2-16-9x^2-6x-9\)
\(\Rightarrow\left(-6x+18x-x+6x\right)+\left(9x^2-9x^2-9x^2+9x^2\right)=-1+2-16-9\)
\(\Rightarrow17x=-24\)
\(\Rightarrow x=-\dfrac{24}{17}.\)
Vậy \(x=-\dfrac{24}{17}.\)
\(\left(1-3x\right)^2-\left(x-2\right)\left(9x+1\right)=\left(3x-4\right)\left(3x+4\right)-9\left(x+3\right)^2\)
\(\Rightarrow1-6x+9x^2-x\left(9x+1\right)+2\left(9x+1\right)=9x^2-16-9\left(x^2+6x+9\right)\)\(\Rightarrow1-6x+9x^2-9x^2-x-18x-2=9x^2-16-9x^2-54x-81\)\(\Rightarrow-1-24x=97-54x\)
\(\Rightarrow-1-24x-97+54x=0\)
\(\Rightarrow-98x+20x=0\)
\(\Rightarrow x=\dfrac{49}{10}\)
bài này không thể tìm được x.
dạng: ax+b=0 thì mới tìm được x
trong đó: a, b là hằng số