K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{x-1}{3}=\frac{y-1}{4}=\frac{z+2}{5}=\frac{z-1+y-1+z+2}{3+4+5}=\frac{-36}{12}=-3\)

=> \(\hept{\begin{cases}\frac{x-1}{3}=-3\\\frac{y-1}{4}=-3\\\frac{z+2}{5}=-3\end{cases}}\)  => \(\hept{\begin{cases}x-1=-9\\y-1=-12\\z+2=-15\end{cases}}\) => \(\hept{\begin{cases}x=-8\\x=-11\\x=-13\end{cases}}\)

Vậy ...

Đề bài: \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{2}y+4\right|=0\)

PT \(\Leftrightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+4=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-8\end{matrix}\right.\)

   Vậy \(\left(x;y\right)=\left(\dfrac{1}{6};-8\right)\)

Ta có: \(\left|3x-\dfrac{1}{2}\right|\ge0\forall x\)

\(\left|\dfrac{1}{2}y+4\right|\ge0\forall y\)

Do đó: \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{2}y+4\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{2}\\\dfrac{1}{2}y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-8\end{matrix}\right.\)

1 tháng 1 2020

Câu hỏi của le ngoc han - Toán lớp 7 - Học toán với OnlineMath

24 tháng 6 2016

(x^2+1)(x-1)(x+3)>0

Vì x^2+1>0 với mọi x

nên: (x-1)(x+3)>0

Trường hợp 1:

x-1<0, x+3 <0

Vì x+3 > x-1 nên x+3<0 suy ra x<-3

Trường hợp 2:

x-1>0, x+3>0

Vì x-1<x+3 nên x-1 >0 suy ra x>1

Vậy x<-3 hoặc x>1

24 tháng 6 2016

Vì tích 3 số là số dương nên trong 3 số có thể gồm 2 số âm, 1 số dương hoặc cả 3 số đều dương

TH1: Có 2 số âm, 1 số dương

Trước hết ta có \(x+3>x-1\)

\(x^2+1>x-1\)

Vì vậy \(x-1< 0\)

\(x^2+1>0\) nên \(x+3< 0\)

\(\Rightarrow x< -3\left(< 1\right)\)

TH2: Cả 3 số đều dương

Xét số bé nhất lớn hơn 0:

\(x-1>0\Rightarrow x>1\)

Vậy \(\orbr{\begin{cases}x< -3\\x>1\end{cases}}\)

20 tháng 7 2017

a) \(\left(x+1\right)\left(x-2\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Leftrightarrow-1< x< 2\) (đúng)

Hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\) (vô lý)

=> \(-1< x< 2\)

b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)

Bất đẳng thức xảy ra khi 2 thừa số đồng dấu .

\(\left(1\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)

\(\left(2\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)

Vậy \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\) thì thõa mãn 

20 tháng 7 2017

a) Để (x+1)(x-2)<0 khi x+1 và x-2 trái dấu 

Mà x+1 > x-2 nên \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}}\)

=> -1 < x < 2

Vậy -1 < x < 2

b) Đề \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) khi x+2 và \(\frac{2}{3}\) cùng dấu

Với x+2 và \(x+\frac{2}{3}\) cùng dương : \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)

Với x+2 và \(x+\frac{2}{3}\) cùng âm : \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)

Vậy x>2 hoặc x < \(\frac{2}{3}\)

3 tháng 5 2023

a, \(A\left(x\right)+4x^3-x=-5x^2-2x^3+5+3x^2+2x\\ \Leftrightarrow A\left(x\right)=-5x^2-2x^3+5+3x^2+2x-4x^3+x=\left(-2x^3-4x^3\right)+\left(-5x^2+3x^2\right)+\left(2x+x\right)+5\\ =-6x^3-2x^2+3x+5\)

b,  \(B\left(x\right)=A\left(x\right):\left(x-1\right)=\left(-6x^3-2x^2+3x+5\right):\left(x-1\right)=-6x^2-8x-5\)

Thay \(x=-1\) vào \(B\left(x\right)\)

\(\Rightarrow-6.\left(-1\right)^2-8\left(-1\right)-5=-3\ne0\)

\(\Rightarrow x=-1\) không là nghiệm của B(x)