K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

Tìm x:

1. \(25x^2-20x+4=0\)

\(\left(5x-2\right)^2=0\)

\(5x-2=0\)

\(5x=2\)

\(x=\dfrac{2}{5}\)

⇒ S = \(\left\{\dfrac{2}{5}\right\}\)

2. \(\left(2x-3\right)^2-\left(2x+1\right).\left(2x-1\right)=0\)

\(4x^2-12x+9-\left(4x^2-1\right)=0\)

\(4x^2-12x+9-4x^2+1=0\)

\(-12x+10=0\)

\(-12x=-10\)

\(x=\dfrac{5}{6}\)

⇒ S \(=\left\{\dfrac{5}{6}\right\}\)

3. \(\left(\dfrac{1}{2}x-1\right)\left(\dfrac{1}{2}x+1\right)-\left(\dfrac{1}{2}x-1\right)^2=0\)

\(\dfrac{1}{4}x^2-1-\left(\dfrac{1}{4}x^2-x+1\right)=0\)

\(\dfrac{1}{4}x^2-1-\dfrac{1}{4}x^2+x-1=0\)

\(-2+x=0\)

\(x=2\)

⇒ S \(=\left\{2\right\}\)

4. \(\left(2x-3\right)^2+\left(2x+5\right)^2=8\left(x+1\right)^2\)

\(4x^2-12x+9+4x^2+20x+25=8\left(x^2+2x+1\right)\)

\(8x^2+8x+34=8x^2+16x+8\)

\(8x+34=16x+8\)

\(8x-16x=8-34\)

\(-8x=-26\)

\(x=\dfrac{13}{4}\)

⇒ S \(=\left\{\dfrac{13}{4}\right\}\)

5.\(4x^2+12x-7=0\)

\(4x^2+14x-2x-7=0\)

\(2x\left(2x+7\right)-\left(2x+7\right)=0\)

\(\left(2x+7\right)\left(2x-1\right)=0\)

\(\left[{}\begin{matrix}2x+7=0\\2x-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-7}{2};\dfrac{1}{2}\right\}\)

6. \(\dfrac{1}{4}x^2+\dfrac{2}{3}x-\dfrac{5}{9}=0\)

\(9x^2+24x-20=0\)

\(9x^2+30x-6x-20=0\)

\(3x\left(3x+10\right)-2\left(3x+10\right)=0\)

\(\left(3x+10\right)\left(3x-2\right)=0\)

\(\left[{}\begin{matrix}3x+10=0\\3x-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{-10}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-10}{3};\dfrac{2}{3}\right\}\)

1 tháng 6 2018

7. \(24\dfrac{8}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)

\(\dfrac{224}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)

\(896-9x^2-12x=0\)

\(-896+9x^2+12x=0\)

\(9x^2+12x-896=0\)

\(9x^2-84x+96x-896=0\)

\(3x\left(3x-28\right)+32\left(3x-28\right)=0\)

\(\left(3x-28\right)\left(3x+32\right)=0\)

\(\left[{}\begin{matrix}3x-28=0\\3x+32=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=\dfrac{-32}{3}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-32}{3};\dfrac{28}{3}\right\}\)

1 tháng 6 2018

bn kiểm tra giúp mk đề 2 câu cuối , mk làm ko ra

2 tháng 6 2018

1. \(x^6-2x^3+1=0\Leftrightarrow\left(x^3-1\right)^2=0\Leftrightarrow x=1\)

2. \(x^6+\dfrac{1}{4}x^3+\dfrac{1}{64}=0\Leftrightarrow\left(x^3\right)^2+2.x^3.\dfrac{1}{8}+\left(\dfrac{1}{8}\right)^2=0\Leftrightarrow\left(x+\dfrac{1}{8}\right)^2=0\Leftrightarrow x=-\dfrac{1}{2}\)4. \(x^3-10x^2+25x=0\Leftrightarrow x^3-5x^2-5x^2+25x=0\)

\(\Leftrightarrow x^2\left(x-5\right)-5x\left(x-5\right)=0\)

\(\Leftrightarrow x\left(x-5\right)^2=0\Leftrightarrow x=5\)

5. \(\dfrac{1}{4}x^3-3x^2+9x=0\)

\(\Leftrightarrow x\left(\dfrac{1}{4}x^2-3x+9\right)=0\)

\(\Leftrightarrow x\left[\left(\dfrac{1}{2}x\right)^2-2.\dfrac{1}{2}x.3+3^2\right]=0\)

\(\Leftrightarrow x\left(\dfrac{1}{2}x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

6. \(x^5-16x=0\Leftrightarrow x\left(x^4-16\right)=0\Leftrightarrow x\left(x^2-4\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\\x^2=-4\left(l\right)\end{matrix}\right.\)

7. \(4x^2+4x-3=0\Leftrightarrow4x^2-2x^2-6x-3=0\)

\(\Leftrightarrow2x\left(2x-1\right)-3\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

8. \(4x^2+28x+48=0\Leftrightarrow4x^2+12x+14x+48=0\)

\(\Leftrightarrow4x\left(x+3\right)+12\left(x+4\right)=0\)

\(\Leftrightarrow\left(4x+12\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)

9. \(9x^2-12x+3=0\Leftrightarrow9x^2-9x-3x+3=0\Leftrightarrow9x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(9x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

2 tháng 6 2018

|2 - x|2 + 6x - 3 = 0

<=> (x - 2)2 + 6x - 3 = 0

<=> x2 - 4x + 4 + 6x - 3 = 0

<=> x2 + 2x + 1 = 0

<=> (x + 1)2 = 0

<=> x + 1 = 0

<=> x = -1

Bắt phải thể hiện -_-

25 tháng 4 2020

1.(x -5)^2 - 25 =0

=> (x - 5)^2 = 25

=> x - 5 = 5 hoặc x - 5 = -5

=> x = 10 hoặc x = 0

vậy_

2. (x -2)^3 =27

=> x - 2 = 3

=> x = 5

vậy_

3. 3(x -7) + 2x(x+2) = 2x^2

=> 3x - 21 + 2x^2 + 4x = 2x^2

=> 7x - 21 = 0

=> 7x = 21

=> x = 3

vậy_

4. (x^2 - 4) (x +8) =0

=> x^2 - 4 = 0 hoặc x + 8 = 0

=> x^2 = 4 hoặc x = -8

=> x = 2 hoặc x = -2 hoặc x = -8

vậy_

5. x^ 2 + 3x = 0

=> x(x + 3) = 0 

=> x = 0 hoặc x + 3 = 0

=> x = 0 hoặc x = -3

vậy_

6. 3x^3 - 3x = 0

=> 3x(x^2 - 1) = 0

=> 3x(x - 1)(x + 1) = 0

=> x = 0 hoặc x = 1 hoặc x = -1

vậy_

7. (x +1)^2 = ( 2x +3)^2

=> (x + 1 + 2x + 3)(x + 1 - 2x - 3) = 0

=> (3x + 3)(-x - 2) = 0

=> x = -1 hoặc x = -2

vậy_

Bài làm

1) ( x - 5 )2 - 25 = 0

<=> ( x - 5 - 5 )( x - 5 + 5 ) = 0

<=> x( x - 10 ) = 

<=> \(\orbr{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=10\end{cases}}}\)

Vậy S = { 0; 10 }

2) \(\left(x-2\right)^3=27\)

\(\Leftrightarrow\left(x-2\right)^3=3^3\)

\(\Leftrightarrow x-2=3\)

\(\Leftrightarrow x=5\)

Vậy x = 5 là nghiệm phương trình.

3) \(3\left(x-7\right)+2x\left(x+2\right)=2x^2\)

\(\Leftrightarrow3x+2x^2+4x-2x^2=21\)

\(\Leftrightarrow7x=21\)

\(\Leftrightarrow x=\frac{21}{7}=3\)

Vậy x = 3 là nghiệm phương trình

4) \(\left(x^2-4\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\pm2\\x=-8\end{cases}}}\)

Vậy S = { 2; -2; -8 }

5) \(x^2+3x=0\)

\(\Leftrightarrow x\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)

Vậy S = { 0; -3 } 

6) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)

Vậy S = { +1; 0 }

7) \(\left(x+1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(2x+3\right)^2=0\)

\(\Leftrightarrow\left(x+1-2x-3\right)\left(x+1+2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-x-2=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{4}{3}\end{cases}}}\)

Vậy S = { -2; -4/3 }

# Học tốt #

1: \(=\left(3x-2y\right)^2-3\)

2: \(=x^2+4x+4-3=\left(x+2\right)^2-3\)

3: \(=x^2-4x+4+3=\left(x-2\right)^2+3\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)

6: \(=\dfrac{1}{4}x^2+x+1-1=\left(\dfrac{1}{2}x+1\right)^2-1\)

18 tháng 6 2018

Giải:

1) \(9x^2-12xy+4y^2-3\)

\(=\left(9x^2-12xy+4y^2\right)-3\)

\(=\left(3x-2y\right)^2-3\)

2) \(x^2+4x+1\)

\(=x^2+4x+4-3\)

\(=\left(x+2\right)^2-3\)

3) \(x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\)

4) \(x^2+6x+15\)

\(=x^2+6x+9+6\)

\(=\left(x+3\right)^2+6\)

5) \(x^2-x+\dfrac{1}{3}\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)

6) \(\dfrac{1}{4}x^2+x\)

\(=x\left(\dfrac{1}{4}x+1\right)\)

7) \(3x^2+2x+1\)

\(=x^2+2x+1+2x^2\)

\(=\left(x+1\right)^2+2x^2\)

8) \(2x^2-2x+1\)

\(=x^2-2x+1+x^2\)

\(=\left(x-1\right)^2+x^2\)

9) \(10a^2+5b^2+12ab+4a-6b+15\)

\(=a^2+b^2+9a^2+12ab+4b^2+4a-6b+15\)

\(=9a^2+12ab+4b^2+a^2+4a-6b+b^2+15\)

\(=\left(3a+2b\right)^2+a\left(a+4\right)-b\left(6-b\right)+15\)

Vậy ...

18 tháng 6 2018

Giải;

1) \(9x^2-12xy+4y^2-3\)

\(=\left(9x^2-12xy+4y^2\right)-3\)

\(=\left(3x-2y\right)^2-3\)

2) \(x^2+4x+1\)

\(=x^2+4x+4-3\)

\(=\left(x+2\right)^2-3\)

3) \(x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\)

4) \(x^2+6x+15\)

\(=x^2+6x+9+6\)

\(=\left(x+3\right)^2+6\)

5) \(x^2-x+\dfrac{1}{3}\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)

6) \(\dfrac{1}{4}x^2+x\)

\(=x\left(\dfrac{1}{4}x+1\right)\)

7) \(3x^2+2x+1\)

\(=x^2+2x+1+2x^2\)

\(=\left(x+1\right)^2+2x^2\)

8) \(2x^2-2x+1\)

\(=x^2-2x+1+x^2\)

\(=\left(x-1\right)^2+x^2\)

9) \(10a^2+5b^2+12ab+4a-6b+15\)

\(=a^2+b^2+9a^2+12ab+4b^2+4a-6b+15\)

\(=9a^2+12ab+4b^2+a^2+4a-6b+b^2+15\)

\(=\left(3a+2b\right)^2+a\left(a+4\right)-b\left(6-b\right)+15\)

Vậy ...

18 tháng 6 2018

Giải:

1) \(9x^2-12xy+4y^2-3\)

\(=\left(3x-2y\right)^2-3\)

\(=\left(3x-2y-\sqrt{3}\right)\left(3x-2y+\sqrt{3}\right)\) (Bước này chắc không cần)

2) \(x^2+4x+1\)

\(=x^2+4x+4-3\)

\(=\left(x+2\right)^2-3\)

\(=\left(x+2-\sqrt{3}\right)\left(x+2+\sqrt{3}\right)\)

(Bước này chắc không cần)

3) \(x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\)

4) \(x^2+6x+15\)

\(=x^2+6x+9+6\)

\(=\left(x+3\right)^2+6\)

5) \(x^2-x+\dfrac{1}{3}\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)

6) \(\dfrac{1}{4}x^2+x\)

\(=\left(\dfrac{1}{2}x\right)^2+x+1-1\)

\(=\left(\dfrac{1}{2}x+1\right)^2-1\)

7) \(3x^2+2x+1\)

\(=x^2+2x+1+2x^2\)

\(=\left(x+1\right)^2+2x^2\)

8) \(2x^2-2x+1\)

\(=x^2-2x+1+x^2\)

\(=\left(x-1\right)^2+x^2\)

9) \(10a^2+5b^2+12ab+4a-6b+15\)

\(=4a^2+6a^2+4b^2+b^2+12ab+4a-6b+15\)

\(=\left(6a^2+b^2+12ab\right)+4a+4a^2-6b+4b^2+15\)

\(=\left(6a+b\right)^2+4a\left(1+a\right)-2b\left(3+2b\right)+15\)

18 tháng 6 2018

Giải:

1) \(9x^2-12xy+4y^2-3\)

\(=\left(9x^2-12xy+4y^2\right)-3\)

\(=\left(3x-2y\right)^2-3\)

2) \(x^2+4x+1\)

\(=x^2+4x+4-3\)

\(=\left(x+2\right)^2-3\)

3) \(x^2-4x+7\)

\(=x^2-4x+4+3\)

\(=\left(x-2\right)^2+3\)

4) \(x^2+6x+15\)

\(=x^2+6x+9+6\)

\(=\left(x+3\right)^2+6\)

5) \(x^2-x+\dfrac{1}{3}\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{1}{12}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{12}\)

6) \(\dfrac{1}{4}x^2+x\)

\(=x\left(\dfrac{1}{4}x+1\right)\)

7) \(3x^2+2x+1\)

\(=x^2+2x+1+2x^2\)

\(=\left(x+1\right)^2+2x^2\)

8) \(2x^2-2x+1\)

\(=x^2-2x+1+x^2\)

\(=\left(x-1\right)^2+x^2\)

9) \(10a^2+5b^2+12ab+4a-6b+15\)

\(=a^2+b^2+9a^2+12ab+4b^2+4a-6b+15\)

\(=9a^2+12ab+4b^2+a^2+4a-6b+b^2+15\)

\(=\left(3a+2b\right)^2+a\left(a+4\right)-b\left(6-b\right)+15\)

Vậy ...