K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(5x\left(x-1\right)=x-1\)

\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}}\)

10 tháng 6 2019

5x(x - 1) = x - 1

=> 5x(x - 1) - (x - 1) = 0

=> (5x - 1)(x - 1) = 0

=> \(\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{1}{5}\\x=1\end{cases}}\)

x3 - 16x = 0

=> x(x2 - 16) = 0

=> \(\orbr{\begin{cases}x=0\\x^2-16=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x^2=16\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)

28 tháng 10 2015

Tích mình đi rồi mình nói thề bạn

18 tháng 8 2021

a, \(16x^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(4x\right)^2-\left(3x+3\right)^2=0\Leftrightarrow\left(4x-3x-3\right)\left(4x+2x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(6x+3\right)=0\Leftrightarrow x=-\frac{1}{2};x=3\)

b, \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)

\(\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow x=-2;x=\frac{1}{3}\)

c, \(5x^3-20x=0\Leftrightarrow5x\left(x^2-4\right)=0\)

\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\Leftrightarrow x=0;x=\pm2\)

1: Ta có: \(16x^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{7}{3}\end{matrix}\right.\)

2: Ta có: \(\left(5x-4\right)^2-49x^2=0\)

\(\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\)

\(\Leftrightarrow\left(2x+4\right)\left(12x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)

3: Ta có: \(5x^3-20x=0\)

\(\Leftrightarrow5x\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

a, 4x2 - 49 = 0

⇔⇔ (2x)2 - 72 = 0

⇔⇔ (2x - 7)(2x + 7) = 0

⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72

b, x2 + 36 = 12x

⇔⇔ x2 + 36 - 12x = 0

⇔⇔ x2 - 2.x.6 + 62 = 0

⇔⇔ (x - 6)2 = 0

⇔⇔ x = 6

e, (x - 2)2 - 16 = 0

⇔⇔ (x - 2)2 - 42 = 0

⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0

⇔⇔ (x - 6)(x + 2) = 0

⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2

f, x2 - 5x -14 = 0

⇔⇔ x2 + 2x - 7x -14 = 0

⇔⇔ x(x + 2) - 7(x + 2) = 0

⇔⇔ (x + 2)(x - 7) = 0

⇔{x+2=0x−7=0⇔{x=−2x=7

2 tháng 10 2021

Bài 2: Tính giá trị của biểu thức sau:

\(16x^2-y^2=\left(4x+y\right)\left(4x-y\right)\)

Thay \(\hept{\begin{cases}x=87\\y=13\end{cases}}\)

\(\Rightarrow\left(4.87+13\right)\left(4.87-13\right)=361.335=120935\)

2 tháng 10 2021

Bài 4: Tìm x

a) \(9x^2+x=0\)

\(\Rightarrow x\left(9x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\9x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{9}\end{cases}}\)

b) \(27x^3+x=0\)

\(\Rightarrow x\left(27x^2+1=0\right)\)

\(\Rightarrow\orbr{\begin{cases}x=0\\27x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\27x^2=\left(-1\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=\frac{-1}{27}\end{cases}}\)

Ta có: \(\frac{-1}{27}\) loại vì \(x^2\ge0\forall x\)

Vậy \(x=0\)

11 tháng 7 2017

giải

5x-(4-2x+x^2)(x+2)+x(x-1)(x+1)=0

5x-(4x+8-2x^2-4x+x^3+2x^2)+x(x^2-1)=0

5x-4x-8+2x^2+4x-x^3-2x^2+x^3-1x=0

(5x-4x+4x-1x)+(-8)+(2x^2-2x^2)+(-x^3+x^3)=0

4x+(-8)=0

4x=0+8

4x=8

x=8:4

x=2

11 tháng 7 2017

D)(4x+1)(16x^2-4x+1)-16x(4x^2-5)=17

64x^3-16x^2+4x+16x^2-4x+1-64x^3+80x=17

80x+1=17

80x=17-1

80x=16

x=1/5

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^