K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\frac{5ax^3-3ax^2}{ax^2}=7\)

\(\Leftrightarrow5x-3=7\)

\(\Leftrightarrow5x=10\)

hay x=2

Vậy: x=2

31 tháng 7 2021

a) x4+2x2+1=(x2+1)2

b)=3x2(a+b)+x(a+b)+5(a+b)=(a+b)(3x2+x+5)

c)=x2(a-b)-2x(a-b)-3(a-b)=(a-b)(x2-2x-3)=(a-b)(x-3)(x+1)

d)=2x(y2-a2)-5by(y+a)=(y+a)(2xy-2xa-5by)

31 tháng 7 2021

\(\text{a) x}^4+2x^2+1=\left(x^2+1\right)^2\)

\(\text{b) 3}ax^2+3bx^2+ãx+bx+5a+5b=\left(3ax^2+3bx^2\right) +\left(ax+bx\right)+\left(5a+5b\right)=3x^2+x\left(a+b\right)+5\left(a+b\right)=\left(a+b\right)\left(3x^2+x+5\right)\)

\(\text{c) a}x^2-bx^2-2ax+2bx-3a+3b=\left(\text{a}x^2-bx^2\right)-\left(2ax-2bx\right)-\left(3a-3b\right)=x^2\left(a-b\right)-2x\left(a-b\right)-3\left(a-b\right)=\left(x^2-2x-3\right)\left(a-b\right)\)

 

AH
Akai Haruma
Giáo viên
5 tháng 9 2021

Lời giải:
Theo định lý Bê-du về phép chia đa thức thì để $A(x)$ chia hết cho $x+1$ thì:

$A(-1)=0$

$\Leftrightarrow -a^2+3a+6-2a=0$

$\Leftrightarrow -a^2+a+6=0$

$\Leftrightarrow a^2-a-6=0$

$\Leftrightarrow (a+2)(a-3)=0$

$\Rightarrow a=-2$ hoặc $a=3$

29 tháng 10 2019

a 2 x + 3 a + 9 = a 2   ⇔   a x a + 3 = a 2 - 9

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

15 tháng 11 2019

\(a^2x+3ax+9=a^2\)

\(a^2x+3ax+9-a^2=0\)

\(ax\left(a+3\right)+\left(3-a\right)\left(a+3\right)=0\)

\(\left(a+3\right)\left(ax+3-a\right)=0\)

\(\left(a+3\right)\left[a\left(x-1\right)+3\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+3=0\\a\left(x-1\right)+3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=-3\left(L\right)\\a=\left\{\pm1;3\right\}\left(N\right);a=-3\left(L\right)\end{cases}}\)

Vậy \(a=\left\{\pm1;3\right\}\)

7 tháng 3 2019

11 tháng 11 2016

em gửi bài qua fb thầy chữa cho nhé, tìm fb của thầy bằng sđt: 0975705122 nhé.

6 tháng 12 2021

giải giúp mik vs ạ

 

6 tháng 12 2021

Sửa đề: \(x+\dfrac{1}{x}=a\)

\(A=x^3+\dfrac{1}{x^3}=\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)=a^3-3a\\ B=x^6+\dfrac{1}{x^6}=\left(x^3+\dfrac{1}{x^3}\right)^2-2=\left(a^3-3a\right)^2-2=a^6-6a^4+9a^2-2\\ C=x^7+\dfrac{1}{x^7}=\left(x^3+\dfrac{1}{x^3}\right)\left(x^4+\dfrac{1}{x^4}\right)-\left(x+\dfrac{1}{x}\right)\)

Mà \(x^4+\dfrac{1}{x^4}=\left(x^2+\dfrac{1}{x^2}\right)^2-2=\left[\left(x+\dfrac{1}{x}\right)^2-2\right]^2-2=\left(a^2-2\right)^2-2=a^4-4a^2+2\)

\(\Leftrightarrow C=\left(a^3-3a\right)\left(a^4-4a^2+2\right)-a=...\)