K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

22 tháng 8 2017

lộn dấu / là phần nha các bạn

VD 5 phần 8 í

26 tháng 9 2018

Nhanh lên! Ai xong trước 9h30

19 tháng 9 2017

\(\dfrac{2}{3}\) là sao ạ,rõ đề đi bn!

15 tháng 8 2019

Ta có : \(\frac{3x}{8}=\frac{3y}{64}=\frac{3z}{216}\) => \(\frac{3x}{8}=\frac{3y}{64}=\frac{z}{72}\)

=> \(\frac{x}{\frac{8}{3}}=\frac{y}{\frac{64}{3}}=\frac{z}{72}\)

=> \(\frac{x^2}{\frac{64}{9}}=\frac{y^2}{\frac{4096}{9}}=\frac{z^2}{5184}\)

=> \(\frac{2x^2}{\frac{128}{9}}=\frac{2y^2}{\frac{8192}{9}}=\frac{z^2}{5184}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{2x^2}{\frac{128}{9}}=\frac{2y^2}{\frac{8192}{9}}=\frac{z^2}{5184}=\frac{2x^2+2y^2-z^2}{\frac{128}{9}+\frac{8192}{9}-5184}=\frac{1}{-\frac{38336}{9}}=-\frac{9}{38336}\)

=> \(\hept{\begin{cases}\frac{2x^2}{\frac{128}{9}}=-\frac{9}{38336}\\\frac{2y^2}{\frac{8192}{9}}=-\frac{9}{38336}\\\frac{z^2}{5184}=-\frac{9}{38336}\end{cases}\Leftrightarrow}x,y,z\in\varnothing\)

Vậy không có số nào thỏa mãn

\(\Leftrightarrow-\dfrac{8}{17}\left(\dfrac{5}{2}-3x\right)=\dfrac{5}{3}\left(2x+\dfrac{8}{5}\right)\)

\(\Leftrightarrow x\cdot\dfrac{24}{17}-\dfrac{20}{17}=\dfrac{10}{3}x+\dfrac{8}{3}\)

\(\Leftrightarrow x\cdot\dfrac{-98}{51}=\dfrac{196}{51}\)

hay x=-2

28 tháng 9 2017

Dễ thế mà không làm được