K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

=146219=73 . 2003 _Ước nguyên tố nhỏ nhất là 73, lớn nhất là 2003

13 tháng 11 2016

ta có 303265^2=5^2 . 131^2 . 463^2(A)

         30785^2=5^2. 47^2 . 131^2(B)

            31047^2=3^2. 79^2. 131^2(C)

             =>A+B+C=131^2.(5^2.463^2+5^2.47^2+3^2.79^2)=131^2  .5470619

TA  CÓ 5470619=7.11,23.3089 VẬY UNTLN là 3089

12 tháng 11 2016

Nè bạn 

https://maytinhbotui.vn/Forums/Topic/tim-uoc-nguyen-to-lon-nhat-303265-2-30785-2-31047-2

20 tháng 4 2022

Không có mô tả.

26 tháng 3 2020

Với n= 3 ,  ,chọn x3 =y3 =1

Giả sử với n \(\ge\)3 , tồn tại cặp số nguyên dương lẻ ( xn ,yn ) sao cho 7.xn2 + y2n= 2n.Ta chứng minh mỗi cặp 

\(\left(X=\frac{x_n+y_n}{2},Y=\frac{\left|7.x_n-y_n\right|}{2}\right)\),

\(\left(X=\frac{\left|x_n-y_n\right|}{2},Y=\frac{7.x_n\pm y_n}{2}\right)^2=2.\left(7.x_n^2+7_n^2\right)=2.2^n=2^{n+1}\)

Vì xn,yn lẻ nên xn = 2a+1 ; yn = 2k + 1 ( a,k \(\inℤ\)

\(\Rightarrow\frac{x_n+y_n}{2}=k+1+1\)và \(\frac{\left|x_n-y_n\right|}{2}=\left|k-1\right|.\)

Điều đó chứng tỏ rằng một trong các số \(\frac{x_n+y_n}{2}.\frac{\left|x_n+y_n\right|}{2}\)là lẻ .Vì vậy với n + 1 tồn tại các số tự nhiên lẻ xn+1 và yn+1 thỏa mãn 7.x2n+1 + y2n+1 =2n+1=> đpcm 

DD
25 tháng 5 2021

Thử lại.

Với \(a-3b=1\Leftrightarrow a=3b+1\):

\(4a+1=12b+5\).

Đặt \(d=\left(12b+5,4b-1\right)\)

Suy ra \(\hept{\begin{cases}12b+5⋮d\\4b-1⋮d\end{cases}}\Rightarrow12b+5-3\left(4b-1\right)=8⋮d\Leftrightarrow d\inƯ\left(8\right)\)mà \(d\)lẻ nên \(d=1\).

\(a+b=3b+1+b=4b+1\)

\(16ab+1=16b\left(3b+1\right)=48b^2+16b+1=\left(12b+1\right)\left(4b+1\right)⋮\left(4b+1\right)\)

Do đó thỏa mãn. 

Trường hợp còn lại tương tự, và cũng thỏa mãn. 

DD
25 tháng 5 2021

Ta có: 

\(\left(4a+1,4b-1\right)=1\Leftrightarrow\left(4a+1,4a+4b\right)=1\Leftrightarrow\left(4a+1,a+b\right)=1\)

\(\left(a+b\right)|\left(16ab+1\right)\Leftrightarrow\left(a+b\right)|\left(16ab+4a+4b+1\right)\Leftrightarrow\left(a+b\right)|\left(4a+1\right)\left(4b+1\right)\)

\(\Leftrightarrow\left(a+b\right)|\left(4b+1\right)\)(1)

\(16ab+1=16a\left(b+a\right)-16a^2+1=16a\left(a+b\right)-\left(4a-1\right)\left(4a+1\right)\)

\(\Rightarrow\left(a+b\right)|\left(4a-1\right)\)(2)

lại có: \(\left(4a-1\right)+\left(4b+1\right)=4\left(a+b\right)\)mà \(a,b\inℕ^∗\)

kết hợp với (1), (2) suy ra \(a+b=k\left(4b+1\right),k=\overline{1,3}\)

Suy ra \(\orbr{\begin{cases}a-3b=1\\3a-b=1\end{cases}}\)