Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính tổng các dãy sau :
A = 1 + 2 + 22+…+ 2100
B = 3 – 32 + 33 – … – 3100
Bài giải:
A = 1 + 2 + 22 + …+ 2 100
Nhân a = 2 cho hai vế :
2A = 2 + 22 + 23 + …+ 2101
tính : 2A – A = (2 + 22 + 23 + …+ 2101 ) – (1 +2 + 22+ …+2100)
Vậy A = 2101 – 1
B = 3 – 32 + 33 – … – 3100
Nhân a = 3 cho hai vế : 3B = 32 – 33 + 34 – … – 3101
Tín : B + 3B = (3 – 33 + 33) – …- 3100) + ( 32 – 23 +34 – … – 3101)
4B = 3 – 3101
Vậy B = ( 3- 3101) : 4
(mk dùng kí hiệu \(\overline{...6}\) để chỉ số có tận cùng là 6 nha)
Ta có \(2^{1992}=\left(2^4\right)^{498}=\left(\overline{...6}\right)^{498}=\overline{..6}\)
=> \(3^{2^{1992}}=3^6=9\) (mod 10). (Dòng này mk dùng dấu "=" thay cho dấu đồng dư nha vì ko có dấu đồng dư)
Lại có \(9^{1992}=\left(9^4\right)^{498}=\left(\overline{...1}\right)^{498}=\overline{...1}\)
=> \(2^{9^{1992}}=2^1=2\) (mod 10) (dòng này cũng là dấu đồng dư)
Do đó chữ số tận cùng của \(3^{2^{1992}}-2^{9^{1992}}\) là 9 - 2 = 7