K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2015

a) Đặt UCLN(2n + 1 ; 3n + 1) = d

2n + 1 chia hết cho d => 6n + 3 chia hết cho d

3n + 1 chia hết cho d => 6n + 2 chia hết cho d 

UCLN(6n + 3 ; 6n + 2 ) = 1

Do đó d = 1; Vậy UCLN(2n + 1 ; 3n + 1) = 1

 

14 tháng 11 2020

Ta coi như sau......................................

 \(d\inƯC\left\{2n+3;3n+1\right\}\)

\(\Rightarrow2n+3;3n+1⋮d\)

\(\Rightarrow\left\{\left(2n+3\right)-\left(3n+1\right)\right\}⋮d\)

\(\Rightarrow\left\{3\left(2n+3\right)-2\left(3n+1\right)\right\}⋮d\)

\(\Rightarrow\left\{\left(6n+9\right)-\left(6n+2\right)\right\}⋮d\)

\(\Rightarrow7⋮d\)

\(\Rightarrow d\inƯ\left(7\right)\)

\(Ư\left(7\right)=\left\{1;7\right\}\)

\(\Rightarrow d=\left\{1;7\right\}\)

\(\RightarrowƯC\left(2n+3;3n+1\right)=\left\{1;7\right\}\)

2 tháng 8 2016

tim UCLN cua 2n - 1 va 9n + 4 (n thuoc N*)

gọi UCLN (2n-1,9n+4)=d(d thuộc N*)

ta có 2n-1 chia hết cho d=>(-9)(2n-1)=-18n+9 chia hết cho d

9n+4 chai hết cho d=>2(9n+4)=18n+8 chia hết cho d

=>(18n+9)-(18n+8) chia hết cho d

=>1 chia hết cho d

=>d=1

=>UCLN(2n-1,9n+4)=1

2 tháng 8 2016

gọi UCLN (2n-1,9n+4)=d(d thuộc N*)

ta có 2n-1 chia hết cho d=>(-9)(2n-1)=-18n+9 chia hết cho d

9n+4 chai hết cho d=>2(9n+4)=18n+8 chia hết cho d

=>(18n+9)-(18n+8) chia hết cho d

=>1 chia hết cho d

=>d=1

=>UCLN(2n-1,9n+4)=1

20 tháng 12 2015

gọi d là UC của n+3 và 2n+5 
=> d là ước của 2(n+3) = 2n+6 = 2n+5 + 1 
mà d là ước của 2n+5 => d là ước của 1 => d = 1 

20 tháng 12 2015

 

Gọi d =(A=n+3;B=2n+5)

=> A;B chia hết cho d

=> B -2A = 2n+5 - n -3 = 2 chai hết cho d

=> d thuộc {1;2}

+ d =2  loại vì B =2n+5 là số lẻ 

Vậy d =1 

Vậy (A;B) =1

24 tháng 8 2016

chú đợi anh tí

24 tháng 8 2016

Gọi d = ƯCLN(2n + 1; 6n + 5) (d thuộc N*)

=> 2n + 1 chia hết cho d; 6n + 5 chia hết cho d

=> 3.(2n + 1) chia hết cho d; 6n + 5 chia hết cho d

=> 6n + 3 chia hết cho d; 6n + 5 chia hết cho d

=> (6n + 5) - (6n + 3) chia hết cho d

=> 6n + 5 - 6n - 3 chia hết cho d

=> 2 chia hết cho d

=> d thuộc {1 ; 2}

Mà 2n + 1 lẻ => d lẻ => d = 1

=> ƯC(2n + 1; 6n + 5) = Ư(1) = {1 ; -1}

19 tháng 11 2017

Gọi d là ước chung của n + 3 và 2n + 5 (  \(n\in N\))

Vì n + 3 \(⋮\)\(\Rightarrow\)2.( n + 3 ) \(⋮\)\(\Rightarrow\)2n + 6 \(⋮\)d.

Vì 2n + 6 \(⋮\)d ; 2n + 5 \(⋮\)\(\Rightarrow\)( 2n + 6 ) - ( 2n + 5 ) \(⋮\)d

\(\Rightarrow\)\(⋮\)\(\Rightarrow\)d = 1

Vậy ước chung của n + 3 và 2n + 5 là 1

19 tháng 11 2017

Ta có : 

n+3 và 2n+5 (1)

=> 2n+6 và 2n+5