K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

Gọi d là ƯCLN(9n + 24; 3n + 4)

\(\Rightarrow\hept{\begin{cases}9n+24⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}9n+24⋮d\\3\left(3n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}9n+24⋮d\\9n+12⋮d\end{cases}}}\)

=> ( 9n + 24 ) - ( 9n + 12 ) chia hết cho d

=> 9n + 24 - 9n - 12 chia hết cho d 

=> ( 9n - 9n ) + ( 24 - 12 ) chia hết cho d

=> 0 + 12 chia hết cho d

=> 12 chia hết cho d

=> d thuộc Ư(12) = { -12 ; -6 ; -4 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 4 ; 6 ; 12 }

mà d là số lớn nhất

=> d = 12

=> ƯCLN(9n + 24; 3n + 4) = 12

* K dám chắc * 

=> 

19 tháng 4 2020

Gọi d là ƯC(2n - 1; 9n + 4)

\(\Rightarrow\hept{\begin{cases}2n-1⋮d\\9n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}9\left(2n-1\right)⋮d\\2\left(9n+4\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}18n-9⋮d\\18n+8⋮d\end{cases}}}}\)

=> ( 18n - 9 ) - ( 18n + 8 ) chia hết cho d

=> 18n - 9 - 18 - 8 chia hết cho d

=> ( 18n - 18n ) - ( 9 - 8 ) chia hết cho d

=> 0 - 1 chia hết cho d

=> -1 chia hết cho d

=> d = 1 hoặc d = -1

=> ƯCLN(2n - 1; 9n + 4) = 1

19 tháng 4 2020

Gọi UCLN của ( 2n-1;9n+4) là A

Ta có: \(2n-1⋮A\)\(\Rightarrow\)\(9\left(2n-1\right)⋮A\)\(\Leftrightarrow\)\(18n-9⋮A\)(1)

\(9n+4⋮A\)\(\Rightarrow2\left(9n+4\right)⋮A\Leftrightarrow18n+8⋮A\)(2)

\(\left(1\right)\left(2\right)\Rightarrow\left(18n+8\right)-\left(18n-9\right)⋮A\)

\(\Leftrightarrow17⋮A\)

\(\Rightarrowđpcm\)

14 tháng 12 2016

hum ....to chiu

 

18 tháng 8 2018

n + 6 là ước của 9n + 74

=> 9n + 74 ⋮ n + 6

=> 9n + 54 + 20 ⋮ n + 6

=> 9(n + 6) + 20 ⋮ n + 6

     9(n + 6) ⋮ n + 6

=> 20 ⋮ n + 6

=> n + 6 thuộc Ư(20)

=> n + 6 thuộc {-1; 1; -2; 2; -4; 4; -5; 5; -10; 10; -20; 20}

=> n thuộc {-7; -5; -8; -4; -10; -2; -11; -1; -16; 4; -26; 14}

vậy_

16 tháng 8 2018

\(\frac{n-3}{n+2}\inℤ\Leftrightarrow n-3⋮n+2\)

=> n + 2 - 5 ⋮ n + 2

     n + 2 ⋮ n + 2

=> 5 ⋮ n + 2

=> n + 2 thuộc {-1; 5; 1; -5}

=> n thuộc {-3; 3; -1; -7}

vậy_

16 tháng 8 2018

Bài giải : 

n−3n+2 ∈ Z ⇔n−3 ⋮ n+2

=> n + 2 - 5 ⋮ n + 2

     n + 2 ⋮ n + 2

=> 5 ⋮ n + 2

=> n + 2 € {-1; 5; 1; -5}

=> n € {-3; 3; -1; -7}

Vậy n € { -3 ; 3 ; -1 ; -7 }

30 tháng 12 2016

Ta có ƯCLN ( 2n+3 ; 3n+4) suy ra 3(2n+3)-2(3n+4) chia hết cho d

                                        suy ra (6n +9)-(6n +4) chia hết cho d

                                        suy ra 1 chia hết cho d

                                        Vậy d=1

30 tháng 12 2016

Đặt ƯCLN(2n+3;3n+4)=d => 2n+3 chia hết cho d và 3n+4 chia hết cho d

=>3(2n+3) chia hết cho d và 2(3n+4) chia hết cho d

=>6n+9 chia hết cho d và 6n+8 chia hết cho d

=>(6n+9)-(6n+8) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(2n+3;3n+4)=1

20 tháng 11 2017

A, 

Từ đề bài ta có

\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

suy ra d=1 suy ra đpcm

B nhân 3 vào số đầu tiên

nhâm 2 vào số thứ 2

rồi trừ đi được đpcm

C,

Nhân 2 vào số đầu tiên rồi trừ đi được đpcm