K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

b)Thay x=1;y=1 vào biểu thức trên ta có: 
 3.1.1- 4.1.1+ 10.1.1- 1.1
=3-4+10-1
=(-1)+10-1
=9-1
=8
Vậy giá trị của biểu thức là:8

a) Thay x=1 vảo biểu thức trên ta có: 

1^2- 5.1^2+ 11.1^2

=1-5.1+11.1

=1-5+11

=(-4)+11

=7

Vậy giá trị của biểu thức là: 7

c/ x^2011*y^2012+ 5x^2011*y^2012- 3x^2011*y^2012

b/ 3xy- 4xy+ 10xy- xy

b/ 3xy- 4xy+ 10xy- xy

23 tháng 4 2020

a) Thay x=1 vảo biểu thức trên ta có:

1^2-5.1^2+11.1^2

=1-5.1+11.1

=1-5+11

=(-4)+11

=7

19 tháng 4 2020

Câu 2 bằng trừ 3

19 tháng 4 2020

Câu 1 thay 3x =4y vào tính

23 tháng 12 2021

Vì \(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}\text{≥0,∀x}\\\left(3y+10\right)^{2012}\text{≥0,∀y}\end{matrix}\right.\)

⇒ \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\text{≥0,∀x},y\)

Dấu "=" ⇔ \(\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{27}{2}\\y=-\dfrac{10}{3}\end{matrix}\right.\)

Vậy ...

18 tháng 12 2020

Ta có \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2022}\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)

Vậy x = 27/2 ; y = -10/3 là giá trị cần tìm

18 tháng 12 2020

ta có |2x-27| > hoặc = 0=> |2x-27|^2011> hoặc = 0

(3y+10)^2012> hoặc 0 mà |2x-27|^2011+(3y+10)^2012=0 

=>2x-27=0 hoặc 3y+10=0=>2x=27 hoặc 3y=-10

=>x=13,5 hoặc x=-10/3

vậy .............................

25 tháng 2 2020

Đề bài này thiếu nhé : Phải là : \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\)

Ta có : \(x^2+2y+1=y^2+2z+1=z^2+2x+1=0\)

\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\\z=-1\end{cases}}\)

Khi đó : \(A=\left(-1\right)^{2010}-2011\cdot\left(-1\right)^{2011}-\left(-1\right)^{2012}\)

\(=\left(-2011\right)\cdot\left(-1\right)=2011\)

Vậy : \(A=2011\) với x,y,z thỏa mãn đề.

19 tháng 5 2020

Viết đề cx "NGU"