K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

Ta có:

\(A\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_2x^2+a_1x+a_0\)

\(A\left(1\right)=a_n+a_{n-1}+...+a_2+a_1+a_0\)

=>A(1) là tổng các hệ số

Áp dụng:

\(P\left(1\right)=\left(1^3-2.1^2+4.1-2\right)^{20}\)

\(P\left(1\right)=\left(1-2+4-2\right)^{20}\)

\(P\left(1\right)=1^{20}\)

Vậy tổng các hệ số của P(x) là 1

11 tháng 8 2019

Tổng các hệ số của đa thức  \(f\left(x\right)\)bất kỳ bằng giá trị của nó tại x=1

Ta có:\(f\left(1\right)=\left(3-4\cdot1+1^2\right)^{2017}+\left(4-5\cdot1+2\cdot1^2\right)^{2017}\)

\(=0^{2017}+1^{2017}\)

\(=1\)

11 tháng 4 2018

Khi phá ngoặc của của đa thức f(x) ta sẽ được đa thức \(f\left(x\right)=a_1x^n+a_2x^{n-1}+a_3x^{n-2}+...+a_{n-1}x+a_n\)(với n là bậc của đa thức)

Ta có:\(f\left(1\right)=a_1+a_2+a_3+...+a_{n-1}+a_n\)

Mà \(f\left(1\right)=\left(3-12+8\right)^{111}\cdot\left(4+3+2+1-12+1\right)^{2222}\)\(=-1\)

Suy ra:\(a_1+a_2+a_3+...+a_{n-1}+a_n=-1\)

Vậy tổng các hệ số của đa thức sau khi phá ngoặc là -1

1: \(A=5x^5-5x^3+7x^2-2x+4\)

\(B\left(x\right)=-5x^6+2x^4+4x^3+4x^2-4x-1\)

2: \(A\left(x\right)+B\left(x\right)=5x^5-5x^3+7x^2-2x+4-5x^6+2x^4+4x^3+4x^2-4x-1\)

\(=-5x^6+5x^5+2x^4-x^3+11x^2-6x+3\)

\(A\left(x\right)-B\left(x\right)\)

\(=5x^5-5x^3+7x^2-2x+4+5x^6-2x^4-4x^3-4x^2+4x+1\)

\(=5x^6+5x^5-2x^4-9x^3+3x^2+2x+5\)

2 tháng 5 2023

a) Thu gọn và sắp xếp:
\(P\left(x\right)=2x^3-9x^2+5-4x^3+7x\)

\(P\left(x\right)=\left(2x^3-4x^3\right)-\left(9x^2+2x^2\right)+7x+5\)

\(P\left(x\right)=-2x^3-11x^2+7x+5\)

b) Thay x=1 vào đa thức P(x) ta được:

\(P\left(x\right)=\left(-1\right)^4-\left(-1\right)^3-\left(-1\right)-2=1\)

a: \(M\left(x\right)=2x^2+3\)

\(N\left(x\right)=3x^3-2x^2+x\)

b: \(M\left(x\right)+N\left(x\right)=3x^3+x+3\)

\(M\left(x\right)-N\left(x\right)=2x^2+3-3x^3+2x^2-x=-3x^3+2x^2-x+3\)

14 tháng 5 2022

Câu c : M(x)=2x^2+3 

ta có : x≥ 0 với mọi x 

=> 2x≥ 0 => 2x + 3 ≥ 3 > 0=> M(x) ≠ 0 với mọi xVậy đa thức M(x) không có nghiệm
5 tháng 5 2023

\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)

Bậc của đa thức : \(3\)

Hệ số cao nhất ứng với hệ số của số mũ cao nhất : \(1\)

b, \(B\left(x\right)=A\left(x\right).\left(x-1\right)\\ =\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-10x-x+10\\ =x^4-x^3+x^2-11x+10\)

\(B\left(2\right)=2^4-2^3+2^2-11.2+10=0\)